initial commit

This commit is contained in:
2018-08-08 08:33:26 +02:00
commit ada8fdbdf9
368 changed files with 65878 additions and 0 deletions

View File

@@ -0,0 +1,509 @@
/*
Firmata.cpp - Firmata library
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Modified for Adafruit_BLE_Uart by Limor Fried/Kevin Townsend for
Adafruit Industries, 2014
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
//******************************************************************************
//* Includes
//******************************************************************************
#include "Adafruit_BLE_Firmata.h"
extern "C" {
#include <string.h>
#include <stdlib.h>
}
//******************************************************************************
//* Support Functions
//******************************************************************************
void Adafruit_BLE_FirmataClass::sendValueAsTwo7bitBytes(int value)
{
FirmataSerial.write(value & B01111111); // LSB
FirmataSerial.write(value >> 7 & B01111111); // MSB
}
void Adafruit_BLE_FirmataClass::startSysex(void)
{
FirmataSerial.write(START_SYSEX);
}
void Adafruit_BLE_FirmataClass::endSysex(void)
{
FirmataSerial.write(END_SYSEX);
}
//******************************************************************************
//* Constructors
//******************************************************************************
Adafruit_BLE_FirmataClass::Adafruit_BLE_FirmataClass(Stream &s) : FirmataSerial(s)
{
firmwareVersionCount = 0;
systemReset();
}
//******************************************************************************
//* Public Methods
//******************************************************************************
/* begin method for overriding default serial bitrate */
void Adafruit_BLE_FirmataClass::begin(void)
{
printVersion();
printFirmwareVersion();
}
void Adafruit_BLE_FirmataClass::begin(Stream &s)
{
FirmataSerial = s;
systemReset();
printVersion();
printFirmwareVersion();
}
// output the protocol version message to the serial port
void Adafruit_BLE_FirmataClass::printVersion(void) {
FirmataSerial.write(REPORT_VERSION);
FirmataSerial.write(FIRMATA_MAJOR_VERSION);
FirmataSerial.write(FIRMATA_MINOR_VERSION);
}
void Adafruit_BLE_FirmataClass::printFirmwareVersion(void)
{
byte i;
if(firmwareVersionCount) { // make sure that the name has been set before reporting
startSysex();
FirmataSerial.write(REPORT_FIRMWARE);
FirmataSerial.write(firmwareVersionVector[0]); // major version number
FirmataSerial.write(firmwareVersionVector[1]); // minor version number
for(i=2; i<firmwareVersionCount; ++i) {
sendValueAsTwo7bitBytes(firmwareVersionVector[i]);
}
endSysex();
}
}
void Adafruit_BLE_FirmataClass::setFirmwareNameAndVersion(const char *name, byte major, byte minor)
{
const char *filename;
char *extension;
// parse out ".cpp" and "applet/" that comes from using __FILE__
extension = strstr(name, ".cpp");
filename = strrchr(name, '/') + 1; //points to slash, +1 gets to start of filename
// add two bytes for version numbers
if(extension && filename) {
firmwareVersionCount = extension - filename + 2;
} else {
firmwareVersionCount = strlen(name) + 2;
filename = name;
}
firmwareVersionVector = (byte *) malloc(firmwareVersionCount);
firmwareVersionVector[firmwareVersionCount] = 0;
firmwareVersionVector[0] = major;
firmwareVersionVector[1] = minor;
strncpy((char*)firmwareVersionVector + 2, filename, firmwareVersionCount - 2);
// alas, no snprintf on Arduino
// snprintf(firmwareVersionVector, MAX_DATA_BYTES, "%c%c%s",
// (char)major, (char)minor, firmwareVersionVector);
}
//------------------------------------------------------------------------------
// Serial Receive Handling
int Adafruit_BLE_FirmataClass::available(void)
{
return FirmataSerial.available();
}
void Adafruit_BLE_FirmataClass::processSysexMessage(void)
{
switch(storedInputData[0]) { //first byte in buffer is command
case REPORT_FIRMWARE:
printFirmwareVersion();
break;
case STRING_DATA:
if(currentStringCallback) {
byte bufferLength = (sysexBytesRead - 1) / 2;
char *buffer = (char*)malloc(bufferLength * sizeof(char));
byte i = 1;
byte j = 0;
while(j < bufferLength) {
buffer[j] = (char)storedInputData[i];
i++;
buffer[j] += (char)(storedInputData[i] << 7);
i++;
j++;
}
(*currentStringCallback)(buffer);
}
break;
default:
if(currentSysexCallback)
(*currentSysexCallback)(storedInputData[0], sysexBytesRead - 1, storedInputData + 1);
}
}
int Adafruit_BLE_FirmataClass::processInput(void)
{
int inputData = FirmataSerial.read(); // this is 'int' to handle -1 when no data
int command;
if (inputData == -1) return -1;
//Serial.print(F(" 0x")); Serial.print(inputData, HEX);
if (parsingSysex) {
if(inputData == END_SYSEX) {
//stop sysex byte
parsingSysex = false;
//fire off handler function
processSysexMessage();
} else {
//normal data byte - add to buffer
storedInputData[sysexBytesRead] = inputData;
sysexBytesRead++;
}
} else if( (waitForData > 0) && (inputData < 128) ) {
waitForData--;
storedInputData[waitForData] = inputData;
#ifdef BLE_DEBUG
Serial.print(F(" 0x")); Serial.print(inputData, HEX);
#endif
if( (waitForData==0) && executeMultiByteCommand ) { // got the whole message
#ifdef BLE_DEBUG
Serial.println();
#endif
switch(executeMultiByteCommand) {
case ANALOG_MESSAGE:
if(currentAnalogCallback) {
(*currentAnalogCallback)(multiByteChannel,
(storedInputData[0] << 7)
+ storedInputData[1]);
}
break;
case DIGITAL_MESSAGE:
if(currentDigitalCallback) {
(*currentDigitalCallback)(multiByteChannel,
(storedInputData[0] << 7)
+ storedInputData[1]);
}
break;
case SET_PIN_MODE:
if(currentPinModeCallback)
(*currentPinModeCallback)(storedInputData[1], storedInputData[0]);
break;
case REPORT_ANALOG:
if(currentReportAnalogCallback)
(*currentReportAnalogCallback)(multiByteChannel,storedInputData[0]);
break;
case REPORT_DIGITAL:
if(currentReportDigitalCallback)
(*currentReportDigitalCallback)(multiByteChannel,storedInputData[0]);
break;
}
executeMultiByteCommand = 0;
}
} else {
#ifdef BLE_DEBUG
Serial.print(F("\tReceived 0x")); Serial.print(inputData, HEX);
#endif
// remove channel info from command byte if less than 0xF0
if(inputData < 0xF0) {
command = inputData & 0xF0;
multiByteChannel = inputData & 0x0F;
} else {
command = inputData;
// commands in the 0xF* range don't use channel data
}
switch (command) {
case ANALOG_MESSAGE:
case DIGITAL_MESSAGE:
case SET_PIN_MODE:
waitForData = 2; // two data bytes needed
executeMultiByteCommand = command;
break;
case REPORT_ANALOG:
case REPORT_DIGITAL:
waitForData = 1; // two data bytes needed
executeMultiByteCommand = command;
break;
case START_SYSEX:
parsingSysex = true;
sysexBytesRead = 0;
break;
case SYSTEM_RESET:
systemReset();
break;
case REPORT_VERSION:
printVersion();
break;
}
}
return inputData;
}
//------------------------------------------------------------------------------
// Serial Send Handling
// send an analog message
void Adafruit_BLE_FirmataClass::sendAnalog(byte pin, int value)
{
// create a three byte buffer
uint8_t sendbuffer[3];
// pin can only be 0-15, so chop higher bits
//FirmataSerial.write(ANALOG_MESSAGE | (pin & 0xF));
sendbuffer[0] = ANALOG_MESSAGE | (pin & 0xF);
//sendValueAsTwo7bitBytes(value);
sendbuffer[1] = value % 128; // Tx bits 0-6
sendbuffer[2] = (value >> 7) &0x7F; // Tx bits 7-13
FirmataSerial.write(sendbuffer, 3);
}
// send a single digital pin in a digital message
void Adafruit_BLE_FirmataClass::sendDigital(byte pin, int value)
{
/* TODO add single pin digital messages to the protocol, this needs to
* track the last digital data sent so that it can be sure to change just
* one bit in the packet. This is complicated by the fact that the
* numbering of the pins will probably differ on Arduino, Wiring, and
* other boards. The DIGITAL_MESSAGE sends 14 bits at a time, but it is
* probably easier to send 8 bit ports for any board with more than 14
* digital pins.
*/
// TODO: the digital message should not be sent on the serial port every
// time sendDigital() is called. Instead, it should add it to an int
// which will be sent on a schedule. If a pin changes more than once
// before the digital message is sent on the serial port, it should send a
// digital message for each change.
// if(value == 0)
// sendDigitalPortPair();
}
// send 14-bits in a single digital message (protocol v1)
// send an 8-bit port in a single digital message (protocol v2)
void Adafruit_BLE_FirmataClass::sendDigitalPort(byte portNumber, int portData)
{
// create a three byte buffer
uint8_t sendbuffer[3];
sendbuffer[0] = DIGITAL_MESSAGE | (portNumber & 0xF);
sendbuffer[1] = (byte)portData % 128; // Tx bits 0-6
sendbuffer[2] = portData >> 7; // Tx bits 7-13
FirmataSerial.write(sendbuffer, 3);
}
void Adafruit_BLE_FirmataClass::sendSysex(byte command, byte bytec, byte* bytev)
{
byte i;
startSysex();
FirmataSerial.write(command);
for(i=0; i<bytec; i++) {
sendValueAsTwo7bitBytes(bytev[i]);
}
endSysex();
}
void Adafruit_BLE_FirmataClass::sendString(byte command, const char* string)
{
sendSysex(command, strlen(string), (byte *)string);
}
// send a string as the protocol string type
void Adafruit_BLE_FirmataClass::sendString(const char* string)
{
sendString(STRING_DATA, string);
}
// Internal Actions/////////////////////////////////////////////////////////////
// generic callbacks
void Adafruit_BLE_FirmataClass::attach(byte command, callbackFunction newFunction)
{
switch(command) {
case ANALOG_MESSAGE: currentAnalogCallback = newFunction; break;
case DIGITAL_MESSAGE: currentDigitalCallback = newFunction; break;
case REPORT_ANALOG: currentReportAnalogCallback = newFunction; break;
case REPORT_DIGITAL: currentReportDigitalCallback = newFunction; break;
case SET_PIN_MODE: currentPinModeCallback = newFunction; break;
}
}
void Adafruit_BLE_FirmataClass::attach(byte command, systemResetCallbackFunction newFunction)
{
switch(command) {
case SYSTEM_RESET: currentSystemResetCallback = newFunction; break;
}
}
void Adafruit_BLE_FirmataClass::attach(byte command, stringCallbackFunction newFunction)
{
switch(command) {
case STRING_DATA: currentStringCallback = newFunction; break;
}
}
void Adafruit_BLE_FirmataClass::attach(byte command, sysexCallbackFunction newFunction)
{
currentSysexCallback = newFunction;
}
void Adafruit_BLE_FirmataClass::detach(byte command)
{
switch(command) {
case SYSTEM_RESET: currentSystemResetCallback = NULL; break;
case STRING_DATA: currentStringCallback = NULL; break;
case START_SYSEX: currentSysexCallback = NULL; break;
default:
attach(command, (callbackFunction)NULL);
}
}
// sysex callbacks
/*
* this is too complicated for analogReceive, but maybe for Sysex?
void Adafruit_BLE_FirmataClass::attachSysex(sysexFunction newFunction)
{
byte i;
byte tmpCount = analogReceiveFunctionCount;
analogReceiveFunction* tmpArray = analogReceiveFunctionArray;
analogReceiveFunctionCount++;
analogReceiveFunctionArray = (analogReceiveFunction*) calloc(analogReceiveFunctionCount, sizeof(analogReceiveFunction));
for(i = 0; i < tmpCount; i++) {
analogReceiveFunctionArray[i] = tmpArray[i];
}
analogReceiveFunctionArray[tmpCount] = newFunction;
free(tmpArray);
}
*/
//******************************************************************************
//* Private Methods
//******************************************************************************/
// resets the system state upon a SYSTEM_RESET message from the host software
void Adafruit_BLE_FirmataClass::systemReset(void)
{
byte i;
waitForData = 0; // this flag says the next serial input will be data
executeMultiByteCommand = 0; // execute this after getting multi-byte data
multiByteChannel = 0; // channel data for multiByteCommands
for(i=0; i<MAX_DATA_BYTES; i++) {
storedInputData[i] = 0;
}
parsingSysex = false;
sysexBytesRead = 0;
if(currentSystemResetCallback)
(*currentSystemResetCallback)();
//flush(); //TODO uncomment when Firmata is a subclass of HardwareSerial
}
void Adafruit_BLE_FirmataClass::setUsablePins(uint8_t *digitaliopins, uint8_t num_digitaliopins,
uint8_t *analogiopins, uint8_t num_analogiopins,
uint8_t *pwmpins, uint8_t num_pwmpins,
uint8_t *servopins, uint8_t num_servopins,
uint8_t sdapin, uint8_t sclpin)
{
_digitaliopins = digitaliopins;
_num_digitaliopins = num_digitaliopins;
_analogiopins = analogiopins;
_num_analogiopins = num_analogiopins;
_pwmpins = servopins;
_num_pwmpins = num_pwmpins;
_servopins = servopins;
_num_servopins = num_servopins;
_sdapin = sdapin;
_sclpin = sclpin;
}
boolean Adafruit_BLE_FirmataClass::contains(uint8_t *set, uint8_t num, uint8_t test) {
for (uint8_t i=0; i<num; i++) {
if (set[i] == test) return true;
}
return false;
}
uint8_t Adafruit_BLE_FirmataClass::location(uint8_t *set, uint8_t num, uint8_t test) {
for (uint8_t i=0; i<num; i++) {
if (set[i] == test) return i;
}
return 255;
}
uint8_t Adafruit_BLE_FirmataClass::PIN_TO_ANALOG(uint8_t p) {
return location(_analogiopins, _num_analogiopins, p);
}
/*==============================================================================
* readPort() - Read an 8 bit port
*============================================================================*/
unsigned char Adafruit_BLE_FirmataClass::readPort(byte port, byte bitmask)
{
unsigned char out=0, pin=port*8;
if (IS_PIN_DIGITAL(pin+0) && (bitmask & 0x01) && digitalRead(PIN_TO_DIGITAL(pin+0))) out |= 0x01;
if (IS_PIN_DIGITAL(pin+1) && (bitmask & 0x02) && digitalRead(PIN_TO_DIGITAL(pin+1))) out |= 0x02;
if (IS_PIN_DIGITAL(pin+2) && (bitmask & 0x04) && digitalRead(PIN_TO_DIGITAL(pin+2))) out |= 0x04;
if (IS_PIN_DIGITAL(pin+3) && (bitmask & 0x08) && digitalRead(PIN_TO_DIGITAL(pin+3))) out |= 0x08;
if (IS_PIN_DIGITAL(pin+4) && (bitmask & 0x10) && digitalRead(PIN_TO_DIGITAL(pin+4))) out |= 0x10;
if (IS_PIN_DIGITAL(pin+5) && (bitmask & 0x20) && digitalRead(PIN_TO_DIGITAL(pin+5))) out |= 0x20;
if (IS_PIN_DIGITAL(pin+6) && (bitmask & 0x40) && digitalRead(PIN_TO_DIGITAL(pin+6))) out |= 0x40;
if (IS_PIN_DIGITAL(pin+7) && (bitmask & 0x80) && digitalRead(PIN_TO_DIGITAL(pin+7))) out |= 0x80;
return out;
}
/*==============================================================================
* writePort() - Write an 8 bit port, only touch pins specified by a bitmask
*============================================================================*/
unsigned char Adafruit_BLE_FirmataClass::writePort(byte port, byte value, byte bitmask)
{
byte pin=port*8;
for (uint8_t i=0; i<8; i++) {
if (bitmask & (1 << i)) {
// dont touch non-digital pins
if (IS_PIN_DIGITAL(pin+i))
digitalWrite(PIN_TO_DIGITAL(pin+i), (value & (1 << i)));
}
}
}

View File

@@ -0,0 +1,219 @@
/*
Firmata.h - Firmata library
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Modified for Adafruit_BLE_Uart by Limor Fried/Kevin Townsend for
Adafruit Industries, 2014
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
#ifndef Adafruit_BLE_Firmata_h
#define Adafruit_BLE_Firmata_h
#include <Arduino.h>
//#include "Boards.h" /* Hardware Abstraction Layer + Wiring/Arduino */
//#define BLE_DEBUG
// move the following defines to Firmata.h?
#define I2C_WRITE B00000000
#define I2C_READ B00001000
#define I2C_READ_CONTINUOUSLY B00010000
#define I2C_STOP_READING B00011000
#define I2C_READ_WRITE_MODE_MASK B00011000
#define I2C_10BIT_ADDRESS_MODE_MASK B00100000
#define MAX_QUERIES 8
#define MINIMUM_SAMPLING_INTERVAL 10
#define REGISTER_NOT_SPECIFIED -1
/* Version numbers for the protocol. The protocol is still changing, so these
* version numbers are important. This number can be queried so that host
* software can test whether it will be compatible with the currently
* installed firmware. */
#define FIRMATA_MAJOR_VERSION 2 // for non-compatible changes
#define FIRMATA_MINOR_VERSION 3 // for backwards compatible changes
#define FIRMATA_BUGFIX_VERSION 1 // for bugfix releases
#define MAX_DATA_BYTES 32 // max number of data bytes in non-Sysex messages
// message command bytes (128-255/0x80-0xFF)
#define DIGITAL_MESSAGE 0x90 // send data for a digital pin
#define ANALOG_MESSAGE 0xE0 // send data for an analog pin (or PWM)
#define REPORT_ANALOG 0xC0 // enable analog input by pin #
#define REPORT_DIGITAL 0xD0 // enable digital input by port pair
//
#define SET_PIN_MODE 0xF4 // set a pin to INPUT/OUTPUT/PWM/etc
//
#define REPORT_VERSION 0xF9 // report protocol version
#define SYSTEM_RESET 0xFF // reset from MIDI
//
#define START_SYSEX 0xF0 // start a MIDI Sysex message
#define END_SYSEX 0xF7 // end a MIDI Sysex message
// extended command set using sysex (0-127/0x00-0x7F)
/* 0x00-0x0F reserved for user-defined commands */
#define SERVO_CONFIG 0x70 // set max angle, minPulse, maxPulse, freq
#define STRING_DATA 0x71 // a string message with 14-bits per char
#define SHIFT_DATA 0x75 // a bitstream to/from a shift register
#define I2C_REQUEST 0x76 // send an I2C read/write request
#define I2C_REPLY 0x77 // a reply to an I2C read request
#define I2C_CONFIG 0x78 // config I2C settings such as delay times and power pins
#define EXTENDED_ANALOG 0x6F // analog write (PWM, Servo, etc) to any pin
#define PIN_STATE_QUERY 0x6D // ask for a pin's current mode and value
#define PIN_STATE_RESPONSE 0x6E // reply with pin's current mode and value
#define CAPABILITY_QUERY 0x6B // ask for supported modes and resolution of all pins
#define CAPABILITY_RESPONSE 0x6C // reply with supported modes and resolution
#define ANALOG_MAPPING_QUERY 0x69 // ask for mapping of analog to pin numbers
#define ANALOG_MAPPING_RESPONSE 0x6A // reply with mapping info
#define REPORT_FIRMWARE 0x79 // report name and version of the firmware
#define SAMPLING_INTERVAL 0x7A // set the poll rate of the main loop
#define SYSEX_NON_REALTIME 0x7E // MIDI Reserved for non-realtime messages
#define SYSEX_REALTIME 0x7F // MIDI Reserved for realtime messages
// these are DEPRECATED to make the naming more consistent
#define FIRMATA_STRING 0x71 // same as STRING_DATA
#define SYSEX_I2C_REQUEST 0x76 // same as I2C_REQUEST
#define SYSEX_I2C_REPLY 0x77 // same as I2C_REPLY
#define SYSEX_SAMPLING_INTERVAL 0x7A // same as SAMPLING_INTERVAL
// pin modes
//#define INPUT 0x00 // defined in wiring.h
//#define OUTPUT 0x01 // defined in wiring.h
#define ANALOG 0x02 // analog pin in analogInput mode
#define PWM 0x03 // digital pin in PWM output mode
#define SERVO 0x04 // digital pin in Servo output mode
#define SHIFT 0x05 // shiftIn/shiftOut mode
#define I2C 0x06 // pin included in I2C setup
#define TOTAL_PIN_MODES 7
extern "C" {
// callback function types
typedef void (*callbackFunction)(byte, int);
typedef void (*systemResetCallbackFunction)(void);
typedef void (*stringCallbackFunction)(char*);
typedef void (*sysexCallbackFunction)(byte command, byte argc, byte*argv);
}
// TODO make it a subclass of a generic Serial/Stream base class
class Adafruit_BLE_FirmataClass
{
public:
Adafruit_BLE_FirmataClass(Stream &s);
/* Arduino constructors */
void begin();
void begin(Stream &s);
/* querying functions */
void printVersion(void);
void blinkVersion(void);
void printFirmwareVersion(void);
//void setFirmwareVersion(byte major, byte minor); // see macro below
void setFirmwareNameAndVersion(const char *name, byte major, byte minor);
/* serial receive handling */
int available(void);
int processInput(void);
/* serial send handling */
void sendAnalog(byte pin, int value);
void sendDigital(byte pin, int value); // TODO implement this
void sendDigitalPort(byte portNumber, int portData);
void sendString(const char* string);
void sendString(byte command, const char* string);
void sendSysex(byte command, byte bytec, byte* bytev);
/* attach & detach callback functions to messages */
void attach(byte command, callbackFunction newFunction);
void attach(byte command, systemResetCallbackFunction newFunction);
void attach(byte command, stringCallbackFunction newFunction);
void attach(byte command, sysexCallbackFunction newFunction);
void detach(byte command);
/* board details */
void setUsablePins(uint8_t *digitaliopins, uint8_t num_digitaliopins,
uint8_t *analogiopins, uint8_t num_analogiopins,
uint8_t *pwmpins, uint8_t num_pwmpins,
uint8_t *servopins, uint8_t num_servopins,
uint8_t sdapin, uint8_t sclpin);
boolean IS_PIN_DIGITAL(uint8_t p) { return contains(_digitaliopins,_num_digitaliopins, p); }
uint8_t PIN_TO_DIGITAL(uint8_t p) { return p; }
boolean IS_PIN_ANALOG(uint8_t p) { return contains(_analogiopins, _num_analogiopins, p); }
uint8_t PIN_TO_ANALOG(uint8_t p);
boolean IS_PIN_PWM(uint8_t p) { return contains(_pwmpins, _num_pwmpins, p); }
uint8_t PIN_TO_PWM(uint8_t p) { return p; }
boolean IS_PIN_SERVO(uint8_t p) { return contains(_servopins, _num_servopins, p); }
uint8_t PIN_TO_SERVO(uint8_t p) { return p-2;}
boolean IS_PIN_I2C(uint8_t p) { return (p == _sdapin) || (p == _sclpin); }
unsigned char readPort(byte port, byte bitmask);
unsigned char writePort(byte port, byte value, byte bitmask);
uint8_t _num_analogiopins;
private:
Stream &FirmataSerial;
uint8_t *_digitaliopins, _num_digitaliopins;
uint8_t *_pwmpins, _num_pwmpins;
uint8_t *_analogiopins;
uint8_t *_servopins, _num_servopins;
uint8_t _sdapin, _sclpin;
boolean contains(uint8_t *set, uint8_t num, uint8_t test);
uint8_t location(uint8_t *set, uint8_t num, uint8_t test);
/* firmware name and version */
byte firmwareVersionCount;
byte *firmwareVersionVector;
/* input message handling */
byte waitForData; // this flag says the next serial input will be data
byte executeMultiByteCommand; // execute this after getting multi-byte data
byte multiByteChannel; // channel data for multiByteCommands
byte storedInputData[MAX_DATA_BYTES]; // multi-byte data
/* sysex */
boolean parsingSysex;
int sysexBytesRead;
/* callback functions */
callbackFunction currentAnalogCallback;
callbackFunction currentDigitalCallback;
callbackFunction currentReportAnalogCallback;
callbackFunction currentReportDigitalCallback;
callbackFunction currentPinModeCallback;
systemResetCallbackFunction currentSystemResetCallback;
stringCallbackFunction currentStringCallback;
sysexCallbackFunction currentSysexCallback;
/* private methods ------------------------------ */
void processSysexMessage(void);
void systemReset(void);
void pin13strobe(int count, int onInterval, int offInterval);
void sendValueAsTwo7bitBytes(int value);
void startSysex(void);
void endSysex(void);
};
extern Adafruit_BLE_FirmataClass BLE_Firmata;
/*==============================================================================
* MACROS
*============================================================================*/
/* shortcut for setFirmwareNameAndVersion() that uses __FILE__ to set the
* firmware name. It needs to be a macro so that __FILE__ is included in the
* firmware source file rather than the library source file.
*/
#define setFirmwareVersion(x, y) setFirmwareNameAndVersion(__FILE__, x, y)
#endif /* BLE_Firmata_h */

View File

@@ -0,0 +1,135 @@
/* Boards.h - Hardware Abstraction Layer for Firmata library */
#ifndef BLE_Firmata_Boards_h
#define BLE_Firmata_Boards_h
#include <inttypes.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h" // for digitalRead, digitalWrite, etc
#else
#include "WProgram.h"
#endif
// Normally Servo.h must be included before Firmata.h (which then includes
// this file). If Servo.h wasn't included, this allows the code to still
// compile, but without support for any Servos. Hopefully that's what the
// user intended by not including Servo.h
#ifndef MAX_SERVOS
#define MAX_SERVOS 0
#endif
/*
Firmata Hardware Abstraction Layer
Firmata is built on top of the hardware abstraction functions of Arduino,
specifically digitalWrite, digitalRead, analogWrite, analogRead, and
pinMode. While these functions offer simple integer pin numbers, Firmata
needs more information than is provided by Arduino. This file provides
all other hardware specific details. To make Firmata support a new board,
only this file should require editing.
The key concept is every "pin" implemented by Firmata may be mapped to
any pin as implemented by Arduino. Usually a simple 1-to-1 mapping is
best, but such mapping should not be assumed. This hardware abstraction
layer allows Firmata to implement any number of pins which map onto the
Arduino implemented pins in almost any arbitrary way.
General Constants:
These constants provide basic information Firmata requires.
TOTAL_PINS: The total number of pins Firmata implemented by Firmata.
Usually this will match the number of pins the Arduino functions
implement, including any pins pins capable of analog or digital.
However, Firmata may implement any number of pins. For example,
on Arduino Mini with 8 analog inputs, 6 of these may be used
for digital functions, and 2 are analog only. On such boards,
Firmata can implement more pins than Arduino's pinMode()
function, in order to accommodate those special pins. The
Firmata protocol supports a maximum of 128 pins, so this
constant must not exceed 128.
TOTAL_ANALOG_PINS: The total number of analog input pins implemented.
The Firmata protocol allows up to 16 analog inputs, accessed
using offsets 0 to 15. Because Firmata presents the analog
inputs using different offsets than the actual pin numbers
(a legacy of Arduino's analogRead function, and the way the
analog input capable pins are physically labeled on all
Arduino boards), the total number of analog input signals
must be specified. 16 is the maximum.
VERSION_BLINK_PIN: When Firmata starts up, it will blink the version
number. This constant is the Arduino pin number where a
LED is connected.
Pin Mapping Macros:
These macros provide the mapping between pins as implemented by
Firmata protocol and the actual pin numbers used by the Arduino
functions. Even though such mappings are often simple, pin
numbers received by Firmata protocol should always be used as
input to these macros, and the result of the macro should be
used with with any Arduino function.
When Firmata is extended to support a new pin mode or feature,
a pair of macros should be added and used for all hardware
access. For simple 1:1 mapping, these macros add no actual
overhead, yet their consistent use allows source code which
uses them consistently to be easily adapted to all other boards
with different requirements.
IS_PIN_XXXX(pin): The IS_PIN macros resolve to true or non-zero
if a pin as implemented by Firmata corresponds to a pin
that actually implements the named feature.
PIN_TO_XXXX(pin): The PIN_TO macros translate pin numbers as
implemented by Firmata to the pin numbers needed as inputs
to the Arduino functions. The corresponding IS_PIN macro
should always be tested before using a PIN_TO macro, so
these macros only need to handle valid Firmata pin
numbers for the named feature.
Port Access Inline Funtions:
For efficiency, Firmata protocol provides access to digital
input and output pins grouped by 8 bit ports. When these
groups of 8 correspond to actual 8 bit ports as implemented
by the hardware, these inline functions can provide high
speed direct port access. Otherwise, a default implementation
using 8 calls to digitalWrite or digitalRead is used.
When porting Firmata to a new board, it is recommended to
use the default functions first and focus only on the constants
and macros above. When those are working, if optimized port
access is desired, these inline functions may be extended.
The recommended approach defines a symbol indicating which
optimization to use, and then conditional complication is
used within these functions.
readPort(port, bitmask): Read an 8 bit port, returning the value.
port: The port number, Firmata pins port*8 to port*8+7
bitmask: The actual pins to read, indicated by 1 bits.
writePort(port, value, bitmask): Write an 8 bit port.
port: The port number, Firmata pins port*8 to port*8+7
value: The 8 bit value to write
bitmask: The actual pins to write, indicated by 1 bits.
*/
/*==============================================================================
* Board Specific Configuration
*============================================================================*/
#define VERSION_BLINK_PIN 99
#define ARDUINO_PINOUT_OPTIMIZE 0
#endif /* BLE_Firmata_Boards_h */

View File

@@ -0,0 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

View File

@@ -0,0 +1,125 @@
#Firmata
Firmata is a protocol for communicating with microcontrollers from software on a host computer. The [protocol](http://firmata.org/wiki/Protocol) can be implemented in firmware on any microcontroller architecture as well as software on any host computer software package. The arduino repository described here is a Firmata library for Arduino and Arduino-compatible devices. See the [firmata wiki](http://firmata.org/wiki/Main_Page) for additional informataion. If you would like to contribute to Firmata, please see the [Contributing](#contributing) section below.
##Usage
There are two main models of usage of Firmata. In one model, the author of the Arduino sketch uses the various methods provided by the Firmata library to selectively send and receive data between the Arduino device and the software running on the host computer. For example, a user can send analog data to the host using ``` Firmata.sendAnalog(analogPin, analogRead(analogPin)) ``` or send data packed in a string using ``` Firmata.sendString(stringToSend) ```. See File -> Examples -> Firmata -> AnalogFirmata & EchoString respectively for examples.
The second and more common model is to load a general purpose sketch called StandardFirmata on the Arduino board and then use the host computer exclusively to interact with the Arduino board. StandardFirmata is located in the Arduino IDE in File -> Examples -> Firmata.
##Firmata Client Libraries
Most of the time you will be interacting with arduino with a client library on the host computers. Several Firmata client libraries have been implemented in a variety of popular programming languages:
* procesing
* [https://github.com/firmata/processing]
* [http://funnel.cc]
* python
* [https://github.com/firmata/pyduino]
* [https://github.com/lupeke/python-firmata]
* [https://github.com/tino/pyFirmata]
* perl
* [https://github.com/ntruchsess/perl-firmata]
* [https://github.com/rcaputo/rx-firmata]
* ruby
* [https://github.com/hardbap/firmata]
* [https://github.com/PlasticLizard/rufinol]
* [http://funnel.cc]
* clojure
* [https://github.com/nakkaya/clodiuno]
* javascript
* [https://github.com/jgautier/firmata]
* [http://breakoutjs.com]
* [https://github.com/rwldrn/johnny-five]
* java
* [https://github.com/4ntoine/Firmata]
* [https://github.com/shigeodayo/Javarduino]
* .NET
* [http://www.imagitronics.org/projects/firmatanet/]
* Flash/AS3
* [http://funnel.cc]
* [http://code.google.com/p/as3glue/]
* PHP
* [https://bitbucket.org/ThomasWeinert/carica-firmata]
Note: The above libraries may support various versions of the Firmata protocol and therefore may not support all features of the latest Firmata spec nor all arduino and arduino-compatible boards. Refer to the respective projects for details.
##Updating Firmata in the Arduino IDE (< Arduino 1.5)
The version of firmata in the Arduino IDE contains an outdated version of Firmata. To update Firmata, clone the repo into the location of firmata in the arduino IDE or download the latest [tagged version](https://github.com/firmata/arduino/tags) (stable), rename the folder to "Firmata" and replace the existing Firmata folder in your Ardino application.
**Mac OSX**:
```bash
$ rm -r /Applications/Arduino.app/Contents/Resources/Java/libraries/Firmata
$ git clone git@github.com:firmata/arduino.git /Applications/Arduino.app/Contents/Resources/Java/libraries/Firmata
```
If you are downloading the latest tagged version of Firmata, rename it to "Firmata" and copy to /Applications/Arduino.app/Contents/Resources/Java/libraries/ overwriting the existing Firmata directory. Right-click (or conrol + click) on the Arduino application and choose "Show Package Contents" and navigate to the libraries directory.
**Windows**:
Using the Git Shell application installed with [GitHub for Windows](http://windows.github.com/) (set default shell in options to Git Bash) or other command line based git tool:
update the path and arduino version as necessary
```bash
$ rm -r c:/Program\ Files/arduino-1.x/libraries/Firmata
$ git clone git@github.com:firmata/arduino.git c:/Program\ Files/arduino-1.x/libraries/Firmata
```
Note: If you use GitHub for Windows, you must clone the firmata/arduino repository using the Git Shell application as described above. You can use the Github for Windows GUI only after you have cloned the repository. Drag the Firmata file into the Github for Windows GUI to track it.
**Linux**:
update the path and arduino version as necessary
```bash
$ rm -r ~/arduino-1.x/libraries/Firmata
$ git clone git@github.com:firmata/arduino.git ~/arduino-1.x/libraries/Firmata
```
##Updating Firmata in the Arduino IDE (>= Arduino 1.5.2)
As of Arduino 1.5.2 and there are separate library directories for the sam and
avr architectures. To update Firmata in Arduino 1.5.2 or higher, follow the
instructions above for pre Arduino 1.5 versions but update the path as follows:
**Mac OSX**:
```
/Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/avr/libraries/Firmata
/Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/sam/libraries/Firmata
```
**Windows**:
```
/Program\ Files/arduino-1.5.x/hardware/arduino/avr/libraries/Firmata
/Program\ Files/arduino-1.5.x/hardware/arduino/sam/libraries/Firmata
```
**Linux**
```
~/arduino-1.5.x/hardware/arduino/avr/libraries/Firmata
~/arduino-1.5.x/hardware/arduino/sam/libraries/Firmata
```
<a name="contributing" />
##Contributing
If you discover a bug or would like to propose a new feature, please open a new [issue](https://github.com/firmata/arduino/issues?sort=created&state=open). Due to the limited memory of standard Arduino boards we cannot add every requested feature to StandardFirmata. Requests to add new features to StandardFirmata will be evaluated by the Firmata developers. However it is still possible to add new features to other Firmata implementations (Firmata is a protocol whereas StandardFirmata is just one of many possible implementations).
To contribute, fork this respository and create a new topic branch for the bug, feature or other existing issue you are addressing. Submit the pull request against the *dev* branch.
If you would like to contribute but don't have a specific bugfix or new feature to contribute, you can take on an existing issue, see issues labeled "pull-request-encouraged". Add a comment to the issue to express your intent to begin work and/or to get any additional information about the issue.
You must thorougly test your contributed code. In your pull request, describe tests performed to ensure that no existing code is broken and that any changes maintain backwards compatibility with the existing api. Test on multiple Arduino board variants if possible. We hope to enable some form of automated (or at least semi-automated) testing in the future, but for now any tests will need to be executed manually by the contributor and reviewsers.
Maintain the existing code style:
- Indentation is 2 spaces
- Use spaces instead of tabs
- Use camel case for both private and public properties and methods
- Document functions (specific doc style is TBD... for now just be sure to document)
- Insert first block bracket on line following the function definition:
<pre>void someFunction()
{
// do something
}
</pre>

View File

@@ -0,0 +1,56 @@
// COMMON SETTINGS
// ----------------------------------------------------------------------------------------------
// These settings are used in both SW UART, HW UART and SPI mode
// ----------------------------------------------------------------------------------------------
#define BUFSIZE 128 // Size of the read buffer for incoming data
#define VERBOSE_MODE true // If set to 'true' enables debug output
// SOFTWARE UART SETTINGS
// ----------------------------------------------------------------------------------------------
// The following macros declare the pins that will be used for 'SW' serial.
// You should use this option if you are connecting the UART Friend to an UNO
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_SWUART_RXD_PIN 9 // Required for software serial!
#define BLUEFRUIT_SWUART_TXD_PIN 10 // Required for software serial!
#define BLUEFRUIT_UART_CTS_PIN 11 // Required for software serial!
#define BLUEFRUIT_UART_RTS_PIN -1 // Optional, set to -1 if unused
// HARDWARE UART SETTINGS
// ----------------------------------------------------------------------------------------------
// The following macros declare the HW serial port you are using. Uncomment
// this line if you are connecting the BLE to Leonardo/Micro or Flora
// ----------------------------------------------------------------------------------------------
#ifdef Serial1 // this makes it not complain on compilation if there's no Serial1
#define BLUEFRUIT_HWSERIAL_NAME Serial1
#endif
// SHARED UART SETTINGS
// ----------------------------------------------------------------------------------------------
// The following sets the optional Mode pin, its recommended but not required
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_UART_MODE_PIN 12 // Set to -1 if unused
// SHARED SPI SETTINGS
// ----------------------------------------------------------------------------------------------
// The following macros declare the pins to use for HW and SW SPI communication.
// SCK, MISO and MOSI should be connected to the HW SPI pins on the Uno when
// using HW SPI. This should be used with nRF51822 based Bluefruit LE modules
// that use SPI (Bluefruit LE SPI Friend).
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_SPI_CS 8
#define BLUEFRUIT_SPI_IRQ 7
#define BLUEFRUIT_SPI_RST 4
// SOFTWARE SPI SETTINGS
// ----------------------------------------------------------------------------------------------
// The following macros declare the pins to use for SW SPI communication.
// This should be used with nRF51822 based Bluefruit LE modules that use SPI
// (Bluefruit LE SPI Friend).
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_SPI_SCK 13
#define BLUEFRUIT_SPI_MISO 12
#define BLUEFRUIT_SPI_MOSI 11

View File

@@ -0,0 +1,859 @@
#include <Servo.h>
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_BLE_Firmata.h>
#if not defined (_VARIANT_ARDUINO_DUE_X_) && not defined (_VARIANT_ARDUINO_ZERO_)
#include <SoftwareSerial.h>
#endif
// Change this to whatever is the Serial console you want, either Serial or SerialUSB
#define FIRMATADEBUG Serial
// Pause for Serial console before beginning?
#define WAITFORSERIAL true
// Print all BLE interactions?
#define VERBOSE_MODE false
/************************ CONFIGURATION SECTION ***********************************/
/*
Don't forget to also change the BluefruitConfig.h for the SPI or UART connection
and pinout you are using!
Then below, you can edit the list of pins that are available. Remove any pins
that are used for accessories or for talking to the BLE module!
*/
/************** For Bluefruit Micro or Feather 32u4 Bluefruit ************/
uint8_t boards_digitaliopins[] = {0,1,2,3,5,6,9,10,11,12,13,A0,A1,A2,A3,A4,A5};
/************** For UNO + nRF58122 SPI & shield ************/
//uint8_t boards_digitaliopins[] = {2, 3, 5, 6, 9, 10, A0, A1, A2, A3, A4, A5};
/************** For Bluefruit M0 Bluefruit ************/
//uint8_t boards_digitaliopins[] = {0,1,5,6,9,10,11,12,13,20,21,A0,A1,A2,A3,A4,A5};
#if defined(__AVR_ATmega328P__)
// Standard setup for UNO, no need to tweak
uint8_t boards_analogiopins[] = {A0, A1, A2, A3, A4, A5}; // A0 == digital 14, etc
uint8_t boards_pwmpins[] = {3, 5, 6, 9, 10, 11};
uint8_t boards_servopins[] = {9, 10};
uint8_t boards_i2cpins[] = {SDA, SCL};
#elif defined(__AVR_ATmega32U4__)
uint8_t boards_analogiopins[] = {A0, A1, A2, A3, A4, A5}; // A0 == digital 14, etc
uint8_t boards_pwmpins[] = {3, 5, 6, 9, 10, 11, 13};
uint8_t boards_servopins[] = {9, 10};
uint8_t boards_i2cpins[] = {SDA, SCL};
#elif defined(__SAMD21G18A__)
#define SDA PIN_WIRE_SDA
#define SCL PIN_WIRE_SCL
uint8_t boards_analogiopins[] = {PIN_A0, PIN_A1, PIN_A2, PIN_A3, PIN_A4, PIN_A5,PIN_A6, PIN_A7}; // A0 == digital 14, etc
uint8_t boards_pwmpins[] = {3,4,5,6,8,10,11,12,A0,A1,A2,A3,A4,A5};
uint8_t boards_servopins[] = {9, 10};
uint8_t boards_i2cpins[] = {SDA, SCL};
#define NUM_DIGITAL_PINS 26
#endif
#define TOTAL_PINS NUM_DIGITAL_PINS /* highest number in boards_digitaliopins MEMEFIXME:automate */
#define TOTAL_PORTS ((TOTAL_PINS + 7) / 8)
/***********************************************************/
#include "Adafruit_BLE_Firmata_Boards.h"
#include "Adafruit_BLE.h"
#include "Adafruit_BluefruitLE_SPI.h"
#include "Adafruit_BluefruitLE_UART.h"
#include "BluefruitConfig.h"
// Create the bluefruit object, either software serial...uncomment these lines
/*
SoftwareSerial bluefruitSS = SoftwareSerial(BLUEFRUIT_SWUART_TXD_PIN, BLUEFRUIT_SWUART_RXD_PIN);
Adafruit_BluefruitLE_UART bluefruit(bluefruitSS, BLUEFRUIT_UART_MODE_PIN,
BLUEFRUIT_UART_CTS_PIN, BLUEFRUIT_UART_RTS_PIN);
*/
/* ...or hardware serial, which does not need the RTS/CTS pins. Uncomment this line */
// Adafruit_BluefruitLE_UART bluefruit(BLUEFRUIT_HWSERIAL_NAME, BLUEFRUIT_UART_MODE_PIN);
/* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user selected CS/IRQ/RST */
Adafruit_BluefruitLE_SPI bluefruit(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);
/* ...software SPI, using SCK/MOSI/MISO user-defined SPI pins and then user selected CS/IRQ/RST */
//Adafruit_BluefruitLE_SPI bluefruit(BLUEFRUIT_SPI_SCK, BLUEFRUIT_SPI_MISO,
// BLUEFRUIT_SPI_MOSI, BLUEFRUIT_SPI_CS,
// BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);
#define AUTO_INPUT_PULLUPS true
// our current connection status
boolean lastBTLEstatus, BTLEstatus;
// make one instance for the user to use
Adafruit_BLE_FirmataClass BLE_Firmata = Adafruit_BLE_FirmataClass(bluefruit);
// A small helper
void error(const __FlashStringHelper*err) {
FIRMATADEBUG.println(err);
while (1);
}
/*==============================================================================
* GLOBAL VARIABLES
*============================================================================*/
/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting
int lastAnalogReads[NUM_ANALOG_INPUTS];
/* digital input ports */
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
/* pins configuration */
byte pinConfig[TOTAL_PINS]; // configuration of every pin
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
int pinState[TOTAL_PINS]; // any value that has been written
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
int samplingInterval = 200; // how often to run the main loop (in ms)
#define MINIMUM_SAMPLE_DELAY 150
#define ANALOG_SAMPLE_DELAY 50
/* i2c data */
struct i2c_device_info {
byte addr;
byte reg;
byte bytes;
};
/* for i2c read continuous more */
i2c_device_info query[MAX_QUERIES];
byte i2cRxData[32];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
unsigned int i2cReadDelayTime = 0; // default delay time between i2c read request and Wire.requestFrom()
Servo servos[MAX_SERVOS];
/*==============================================================================
* FUNCTIONS
*============================================================================*/
void readAndReportData(byte address, int theRegister, byte numBytes) {
// allow I2C requests that don't require a register read
// for example, some devices using an interrupt pin to signify new data available
// do not always require the register read so upon interrupt you call Wire.requestFrom()
if (theRegister != REGISTER_NOT_SPECIFIED) {
Wire.beginTransmission(address);
#if ARDUINO >= 100
Wire.write((byte)theRegister);
#else
Wire.send((byte)theRegister);
#endif
Wire.endTransmission();
delayMicroseconds(i2cReadDelayTime); // delay is necessary for some devices such as WiiNunchuck
} else {
theRegister = 0; // fill the register with a dummy value
}
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
// check to be sure correct number of bytes were returned by slave
if(numBytes == Wire.available()) {
i2cRxData[0] = address;
i2cRxData[1] = theRegister;
for (int i = 0; i < numBytes; i++) {
#if ARDUINO >= 100
i2cRxData[2 + i] = Wire.read();
#else
i2cRxData[2 + i] = Wire.receive();
#endif
}
}
else {
if(numBytes > Wire.available()) {
BLE_Firmata.sendString("I2C Read Error: Too many bytes received");
} else {
BLE_Firmata.sendString("I2C Read Error: Too few bytes received");
}
}
// send slave address, register and received bytes
BLE_Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}
void outputPort(byte portNumber, byte portValue, byte forceSend)
{
// pins not configured as INPUT are cleared to zeros
portValue = portValue & portConfigInputs[portNumber];
// only send if the value is different than previously sent
if(forceSend || previousPINs[portNumber] != portValue) {
//FIRMATADEBUG.print(F("Sending update for port ")); FIRMATADEBUG.print(portNumber); FIRMATADEBUG.print(" = 0x"); FIRMATADEBUG.println(portValue, HEX);
BLE_Firmata.sendDigitalPort(portNumber, portValue);
previousPINs[portNumber] = portValue;
}
}
/* -----------------------------------------------------------------------------
* check all the active digital inputs for change of state, then add any events
* to the Serial output queue using () */
void checkDigitalInputs(boolean forceSend = false)
{
/* Using non-looping code allows constants to be given to readPort().
* The compiler will apply substantial optimizations if the inputs
* to readPort() are compile-time constants. */
for (uint8_t i=0; i<TOTAL_PORTS; i++) {
if (reportPINs[i]) {
// FIRMATADEBUG.print("Reporting on port "); FIRMATADEBUG.print(i); FIRMATADEBUG.print(" mask 0x"); FIRMATADEBUG.println(portConfigInputs[i], HEX);
uint8_t x = BLE_Firmata.readPort(i, portConfigInputs[i]);
// FIRMATADEBUG.print("Read 0x"); FIRMATADEBUG.println(x, HEX);
outputPort(i, x, forceSend);
}
}
}
// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
* two bit-arrays that track Digital I/O and PWM status
*/
void setPinModeCallback(byte pin, int mode)
{
//FIRMATADEBUG.print("Setting pin #"); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(" to "); FIRMATADEBUG.println(mode);
if ((pinConfig[pin] == I2C) && (isI2CEnabled) && (mode != I2C)) {
// disable i2c so pins can be used for other functions
// the following if statements should reconfigure the pins properly
disableI2CPins();
}
if (BLE_Firmata.IS_PIN_SERVO(pin) && mode != SERVO && servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached()) {
servos[BLE_Firmata.PIN_TO_SERVO(pin)].detach();
}
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
reportAnalogCallback(BLE_Firmata.PIN_TO_ANALOG(pin), mode == ANALOG ? 1 : 0); // turn on/off reporting
}
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
if (mode == INPUT) {
portConfigInputs[pin/8] |= (1 << (pin & 7));
} else {
portConfigInputs[pin/8] &= ~(1 << (pin & 7));
}
// FIRMATADEBUG.print(F("Setting pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(F(" port config mask to = 0x"));
// FIRMATADEBUG.println(portConfigInputs[pin/8], HEX);
}
pinState[pin] = 0;
switch(mode) {
case ANALOG:
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to analog"));
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT); // disable output driver
}
pinConfig[pin] = ANALOG;
lastAnalogReads[BLE_Firmata.PIN_TO_ANALOG(pin)] = -1;
}
break;
case INPUT:
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to input"));
if (AUTO_INPUT_PULLUPS) {
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT_PULLUP); // disable output driver
} else {
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT); // disable output driver
}
pinConfig[pin] = INPUT;
// force sending state immediately
//delay(10);
//checkDigitalInputs(true);
}
break;
case OUTPUT:
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to output"));
digitalWrite(BLE_Firmata.PIN_TO_DIGITAL(pin), LOW); // disable PWM
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), OUTPUT);
pinConfig[pin] = OUTPUT;
}
break;
case PWM:
if (BLE_Firmata.IS_PIN_PWM(pin)) {
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to PWM"));
pinMode(BLE_Firmata.PIN_TO_PWM(pin), OUTPUT);
analogWrite(BLE_Firmata.PIN_TO_PWM(pin), 0);
pinConfig[pin] = PWM;
}
break;
case SERVO:
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
pinConfig[pin] = SERVO;
if (!servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached()) {
servos[BLE_Firmata.PIN_TO_SERVO(pin)].attach(BLE_Firmata.PIN_TO_DIGITAL(pin));
}
}
break;
case I2C:
if (BLE_Firmata.IS_PIN_I2C(pin)) {
// mark the pin as i2c
// the user must call I2C_CONFIG to enable I2C for a device
pinConfig[pin] = I2C;
}
break;
default:
FIRMATADEBUG.print(F("Unknown pin mode")); // TODO: put error msgs in EEPROM
}
// TODO: save status to EEPROM here, if changed
}
void analogWriteCallback(byte pin, int value)
{
if (pin < TOTAL_PINS) {
switch(pinConfig[pin]) {
case SERVO:
if (BLE_Firmata.IS_PIN_SERVO(pin))
servos[BLE_Firmata.PIN_TO_SERVO(pin)].write(value);
pinState[pin] = value;
break;
case PWM:
if (BLE_Firmata.IS_PIN_PWM(pin))
analogWrite(BLE_Firmata.PIN_TO_PWM(pin), value);
FIRMATADEBUG.print("pwm("); FIRMATADEBUG.print(BLE_Firmata.PIN_TO_PWM(pin)); FIRMATADEBUG.print(","); FIRMATADEBUG.print(value); FIRMATADEBUG.println(")");
pinState[pin] = value;
break;
}
}
}
void digitalWriteCallback(byte port, int value)
{
//FIRMATADEBUG.print("DWCx"); FIRMATADEBUG.print(port, HEX); FIRMATADEBUG.print(" "); FIRMATADEBUG.println(value);
byte pin, lastPin, mask=1, pinWriteMask=0;
if (port < TOTAL_PORTS) {
// create a mask of the pins on this port that are writable.
lastPin = port*8+8;
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
for (pin=port*8; pin < lastPin; pin++) {
// do not disturb non-digital pins (eg, Rx & Tx)
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
// only write to OUTPUT
// do not touch pins in PWM, ANALOG, SERVO or other modes
if (pinConfig[pin] == OUTPUT) {
pinWriteMask |= mask;
pinState[pin] = ((byte)value & mask) ? 1 : 0;
}
}
mask = mask << 1;
}
FIRMATADEBUG.print(F("Write digital port #")); FIRMATADEBUG.print(port);
FIRMATADEBUG.print(F(" = 0x")); FIRMATADEBUG.print(value, HEX);
FIRMATADEBUG.print(F(" mask = 0x")); FIRMATADEBUG.println(pinWriteMask, HEX);
BLE_Firmata.writePort(port, (byte)value, pinWriteMask);
}
}
// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
*/
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
if (analogPin < BLE_Firmata._num_analogiopins) {
if(value == 0) {
analogInputsToReport = analogInputsToReport &~ (1 << analogPin);
FIRMATADEBUG.print(F("Stop reporting analog pin #")); FIRMATADEBUG.println(analogPin);
} else {
analogInputsToReport |= (1 << analogPin);
FIRMATADEBUG.print(F("Will report analog pin #")); FIRMATADEBUG.println(analogPin);
}
}
// TODO: save status to EEPROM here, if changed
}
void reportDigitalCallback(byte port, int value)
{
if (port < TOTAL_PORTS) {
//FIRMATADEBUG.print(F("Will report 0x")); FIRMATADEBUG.print(value, HEX); FIRMATADEBUG.print(F(" digital mask on port ")); FIRMATADEBUG.println(port);
reportPINs[port] = (byte)value;
}
// do not disable analog reporting on these 8 pins, to allow some
// pins used for digital, others analog. Instead, allow both types
// of reporting to be enabled, but check if the pin is configured
// as analog when sampling the analog inputs. Likewise, while
// scanning digital pins, portConfigInputs will mask off values from any
// pins configured as analog
}
/*==============================================================================
* SYSEX-BASED commands
*============================================================================*/
void sysexCallback(byte command, byte argc, byte *argv)
{
byte mode;
byte slaveAddress;
byte slaveRegister;
byte data;
unsigned int delayTime;
FIRMATADEBUG.println("********** Sysex callback");
switch(command) {
case I2C_REQUEST:
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
//BLE_Firmata.sendString("10-bit addressing mode is not yet supported");
FIRMATADEBUG.println(F("10-bit addressing mode is not yet supported"));
return;
}
else {
slaveAddress = argv[0];
}
switch(mode) {
case I2C_WRITE:
Wire.beginTransmission(slaveAddress);
for (byte i = 2; i < argc; i += 2) {
data = argv[i] + (argv[i + 1] << 7);
#if ARDUINO >= 100
Wire.write(data);
#else
Wire.send(data);
#endif
}
Wire.endTransmission();
delayMicroseconds(70);
break;
case I2C_READ:
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
readAndReportData(slaveAddress, (int)slaveRegister, data);
}
else {
// a slave register is NOT specified
data = argv[2] + (argv[3] << 7); // bytes to read
readAndReportData(slaveAddress, (int)REGISTER_NOT_SPECIFIED, data);
}
break;
case I2C_READ_CONTINUOUSLY:
if ((queryIndex + 1) >= MAX_QUERIES) {
// too many queries, just ignore
BLE_Firmata.sendString("too many queries");
break;
}
queryIndex++;
query[queryIndex].addr = slaveAddress;
query[queryIndex].reg = argv[2] + (argv[3] << 7);
query[queryIndex].bytes = argv[4] + (argv[5] << 7);
break;
case I2C_STOP_READING:
byte queryIndexToSkip;
// if read continuous mode is enabled for only 1 i2c device, disable
// read continuous reporting for that device
if (queryIndex <= 0) {
queryIndex = -1;
} else {
// if read continuous mode is enabled for multiple devices,
// determine which device to stop reading and remove it's data from
// the array, shifiting other array data to fill the space
for (byte i = 0; i < queryIndex + 1; i++) {
if (query[i].addr = slaveAddress) {
queryIndexToSkip = i;
break;
}
}
for (byte i = queryIndexToSkip; i<queryIndex + 1; i++) {
if (i < MAX_QUERIES) {
query[i].addr = query[i+1].addr;
query[i].reg = query[i+1].addr;
query[i].bytes = query[i+1].bytes;
}
}
queryIndex--;
}
break;
default:
break;
}
break;
case I2C_CONFIG:
delayTime = (argv[0] + (argv[1] << 7));
if(delayTime > 0) {
i2cReadDelayTime = delayTime;
}
if (!isI2CEnabled) {
enableI2CPins();
}
break;
case SERVO_CONFIG:
if(argc > 4) {
// these vars are here for clarity, they'll optimized away by the compiler
byte pin = argv[0];
int minPulse = argv[1] + (argv[2] << 7);
int maxPulse = argv[3] + (argv[4] << 7);
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
if (servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached())
servos[BLE_Firmata.PIN_TO_SERVO(pin)].detach();
servos[BLE_Firmata.PIN_TO_SERVO(pin)].attach(BLE_Firmata.PIN_TO_DIGITAL(pin), minPulse, maxPulse);
setPinModeCallback(pin, SERVO);
}
}
break;
case SAMPLING_INTERVAL:
if (argc > 1) {
samplingInterval = argv[0] + (argv[1] << 7);
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
}
} else {
//BLE_Firmata.sendString("Not enough data");
}
break;
case EXTENDED_ANALOG:
if (argc > 1) {
int val = argv[1];
if (argc > 2) val |= (argv[2] << 7);
if (argc > 3) val |= (argv[3] << 14);
analogWriteCallback(argv[0], val);
}
break;
case CAPABILITY_QUERY:
bluefruit.write(START_SYSEX);
bluefruit.write(CAPABILITY_RESPONSE);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(START_SYSEX, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(CAPABILITY_RESPONSE, HEX);
delay(10);
for (byte pin=0; pin < TOTAL_PINS; pin++) {
//FIRMATADEBUG.print("\t#"); FIRMATADEBUG.println(pin);
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
bluefruit.write((byte)INPUT);
bluefruit.write(1);
bluefruit.write((byte)OUTPUT);
bluefruit.write(1);
/*
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(INPUT, HEX);
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(1, HEX);
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(OUTPUT, HEX);
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(1, HEX);
*/
delay(20);
} else {
bluefruit.write(127);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(127, HEX);
delay(20);
continue;
}
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
bluefruit.write(ANALOG);
bluefruit.write(10);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(ANALOG, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(10, HEX);
delay(20);
}
if (BLE_Firmata.IS_PIN_PWM(pin)) {
bluefruit.write(PWM);
bluefruit.write(8);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(PWM, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(8, HEX);
delay(20);
}
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
bluefruit.write(SERVO);
bluefruit.write(14);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(SERVO, HEX);FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(14, HEX);
delay(20);
}
if (BLE_Firmata.IS_PIN_I2C(pin)) {
bluefruit.write(I2C);
bluefruit.write(1); // to do: determine appropriate value
delay(20);
}
bluefruit.write(127);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(127, HEX);
}
bluefruit.write(END_SYSEX);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(END_SYSEX, HEX);
break;
case PIN_STATE_QUERY:
if (argc > 0) {
byte pin=argv[0];
bluefruit.write(START_SYSEX);
bluefruit.write(PIN_STATE_RESPONSE);
bluefruit.write(pin);
if (pin < TOTAL_PINS) {
bluefruit.write((byte)pinConfig[pin]);
bluefruit.write((byte)pinState[pin] & 0x7F);
if (pinState[pin] & 0xFF80) bluefruit.write((byte)(pinState[pin] >> 7) & 0x7F);
if (pinState[pin] & 0xC000) bluefruit.write((byte)(pinState[pin] >> 14) & 0x7F);
}
bluefruit.write(END_SYSEX);
}
break;
case ANALOG_MAPPING_QUERY:
FIRMATADEBUG.println("Analog mapping query");
bluefruit.write(START_SYSEX);
bluefruit.write(ANALOG_MAPPING_RESPONSE);
for (byte pin=0; pin < TOTAL_PINS; pin++) {
bluefruit.write(BLE_Firmata.IS_PIN_ANALOG(pin) ? BLE_Firmata.PIN_TO_ANALOG(pin) : 127);
}
bluefruit.write(END_SYSEX);
break;
}
}
void enableI2CPins()
{
byte i;
// is there a faster way to do this? would probaby require importing
// Arduino.h to get SCL and SDA pins
for (i=0; i < TOTAL_PINS; i++) {
if(BLE_Firmata.IS_PIN_I2C(i)) {
// mark pins as i2c so they are ignore in non i2c data requests
setPinModeCallback(i, I2C);
}
}
isI2CEnabled = true;
// is there enough time before the first I2C request to call this here?
Wire.begin();
}
/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
isI2CEnabled = false;
// disable read continuous mode for all devices
queryIndex = -1;
// uncomment the following if or when the end() method is added to Wire library
// Wire.end();
}
/*==============================================================================
* SETUP()
*============================================================================*/
void systemResetCallback()
{
// initialize a defalt state
FIRMATADEBUG.println(F("***RESET***"));
// TODO: option to load config from EEPROM instead of default
if (isI2CEnabled) {
disableI2CPins();
}
for (byte i=0; i < TOTAL_PORTS; i++) {
reportPINs[i] = false; // by default, reporting off
portConfigInputs[i] = 0; // until activated
previousPINs[i] = 0;
}
// pins with analog capability default to analog input
// otherwise, pins default to digital output
for (byte i=0; i < TOTAL_PINS; i++) {
if (BLE_Firmata.IS_PIN_ANALOG(i)) {
// turns off pullup, configures everything
setPinModeCallback(i, ANALOG);
} else {
// sets the output to 0, configures portConfigInputs
setPinModeCallback(i, INPUT);
}
}
// by default, do not report any analog inputs
analogInputsToReport = 0;
/* send digital inputs to set the initial state on the host computer,
* since once in the loop(), this firmware will only send on change */
/*
TODO: this can never execute, since no pins default to digital input
but it will be needed when/if we support EEPROM stored config
for (byte i=0; i < TOTAL_PORTS; i++) {
outputPort(i, readPort(i, portConfigInputs[i]), true);
}
*/
}
void setup()
{
if (WAITFORSERIAL) {
while (!FIRMATADEBUG) delay(1);
}
FIRMATADEBUG.begin(9600);
FIRMATADEBUG.println(F("Adafruit Bluefruit LE Firmata test"));
FIRMATADEBUG.print("Total pins: "); FIRMATADEBUG.println(NUM_DIGITAL_PINS);
FIRMATADEBUG.print("Analog pins: "); FIRMATADEBUG.println(sizeof(boards_analogiopins));
//for (uint8_t i=0; i<sizeof(boards_analogiopins); i++) {
// FIRMATADEBUG.println(boards_analogiopins[i]);
//}
BLE_Firmata.setUsablePins(boards_digitaliopins, sizeof(boards_digitaliopins),
boards_analogiopins, sizeof(boards_analogiopins),
boards_pwmpins, sizeof(boards_pwmpins),
boards_servopins, sizeof(boards_servopins), SDA, SCL);
/* Initialise the module */
FIRMATADEBUG.print(F("Initialising the Bluefruit LE module: "));
if ( !bluefruit.begin(VERBOSE_MODE) )
{
error(F("Couldn't find Bluefruit, make sure it's in CoMmanD mode & check wiring?"));
}
FIRMATADEBUG.println( F("OK!") );
/* Perform a factory reset to make sure everything is in a known state */
FIRMATADEBUG.println(F("Performing a factory reset: "));
if (! bluefruit.factoryReset() ){
error(F("Couldn't factory reset"));
}
/* Disable command echo from Bluefruit */
bluefruit.echo(false);
FIRMATADEBUG.println("Requesting Bluefruit info:");
/* Print Bluefruit information */
bluefruit.info();
FIRMATADEBUG.println("Setting name to BLE Firmata");
bluefruit.println("AT+GAPDEVNAME=BLE_Firmata");
BTLEstatus = false;
}
void firmataInit() {
FIRMATADEBUG.println(F("Init firmata"));
//BLE_Firmata.setFirmwareVersion(FIRMATA_MAJOR_VERSION, FIRMATA_MINOR_VERSION);
//FIRMATADEBUG.println(F("firmata analog"));
BLE_Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
//FIRMATADEBUG.println(F("firmata digital"));
BLE_Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
//FIRMATADEBUG.println(F("firmata analog report"));
BLE_Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
//FIRMATADEBUG.println(F("firmata digital report"));
BLE_Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
//FIRMATADEBUG.println(F("firmata pinmode"));
BLE_Firmata.attach(SET_PIN_MODE, setPinModeCallback);
//FIRMATADEBUG.println(F("firmata sysex"));
BLE_Firmata.attach(START_SYSEX, sysexCallback);
//FIRMATADEBUG.println(F("firmata reset"));
BLE_Firmata.attach(SYSTEM_RESET, systemResetCallback);
FIRMATADEBUG.println(F("Begin firmata"));
BLE_Firmata.begin();
systemResetCallback(); // reset to default config
}
/*==============================================================================
* LOOP()
*============================================================================*/
void loop()
{
delay(100);
// Link status check
if (! BTLEstatus) {
bluefruit.setMode(BLUEFRUIT_MODE_COMMAND);
BTLEstatus = bluefruit.isConnected();
bluefruit.setMode(BLUEFRUIT_MODE_DATA);
}
// Check if something has changed
if (BTLEstatus != lastBTLEstatus) {
// print it out!
if (BTLEstatus == true) {
FIRMATADEBUG.println(F("* Connected!"));
// initialize Firmata cleanly
bluefruit.setMode(BLUEFRUIT_MODE_DATA);
firmataInit();
}
if (BTLEstatus == false) {
FIRMATADEBUG.println(F("* Disconnected or advertising timed out"));
}
// OK set the last status change to this one
lastBTLEstatus = BTLEstatus;
}
// if not connected... bail
if (! BTLEstatus) {
delay(100);
return;
}
// For debugging, see if there's data on the serial console, we would forwad it to BTLE
if (FIRMATADEBUG.available()) {
bluefruit.write(FIRMATADEBUG.read());
}
// Onto the Firmata main loop
byte pin, analogPin;
/* DIGITALREAD - as fast as possible, check for changes and output them to the
* BTLE buffer using FIRMATADEBUG.print() */
checkDigitalInputs();
/* SERIALREAD - processing incoming messagse as soon as possible, while still
* checking digital inputs. */
while(BLE_Firmata.available()) {
// FIRMATADEBUG.println(F("*data available*"));
BLE_Firmata.processInput();
}
/* SEND FTDI WRITE BUFFER - make sure that the FTDI buffer doesn't go over
* 60 bytes. use a timer to sending an event character every 4 ms to
* trigger the buffer to dump. */
// make the sampling interval longer if we have more analog inputs!
uint8_t analogreportnums = 0;
for(uint8_t a=0; a<8; a++) {
if (analogInputsToReport & (1 << a)) {
analogreportnums++;
}
}
samplingInterval = (uint16_t)MINIMUM_SAMPLE_DELAY + (uint16_t)ANALOG_SAMPLE_DELAY * (1+analogreportnums);
currentMillis = millis();
if (currentMillis - previousMillis > samplingInterval) {
previousMillis += samplingInterval;
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
for(pin=0; pin<TOTAL_PINS; pin++) {
// FIRMATADEBUG.print("pin #"); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(" config = "); FIRMATADEBUG.println(pinConfig[pin]);
if (BLE_Firmata.IS_PIN_ANALOG(pin) && (pinConfig[pin] == ANALOG)) {
analogPin = BLE_Firmata.PIN_TO_ANALOG(pin);
if (analogInputsToReport & (1 << analogPin)) {
int currentRead = analogRead(analogPin);
if ((lastAnalogReads[analogPin] == -1) || (lastAnalogReads[analogPin] != currentRead)) {
//FIRMATADEBUG.print(F("Analog")); FIRMATADEBUG.print(analogPin); FIRMATADEBUG.print(F(" = ")); FIRMATADEBUG.println(currentRead);
BLE_Firmata.sendAnalog(analogPin, currentRead);
lastAnalogReads[analogPin] = currentRead;
}
}
}
}
// report i2c data for all device with read continuous mode enabled
if (queryIndex > -1) {
for (byte i = 0; i < queryIndex + 1; i++) {
readAndReportData(query[i].addr, query[i].reg, query[i].bytes);
}
}
}
}

View File

@@ -0,0 +1,54 @@
// COMMON SETTINGS
// ----------------------------------------------------------------------------------------------
// These settings are used in both SW UART, HW UART and SPI mode
// ----------------------------------------------------------------------------------------------
#define BUFSIZE 128 // Size of the read buffer for incoming data
#define VERBOSE_MODE true // If set to 'true' enables debug output
// SOFTWARE UART SETTINGS
// ----------------------------------------------------------------------------------------------
// The following macros declare the pins that will be used for 'SW' serial.
// You should use this option if you are connecting the UART Friend to an UNO
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_SWUART_RXD_PIN 9 // Required for software serial!
#define BLUEFRUIT_SWUART_TXD_PIN 10 // Required for software serial!
#define BLUEFRUIT_UART_CTS_PIN 11 // Required for software serial!
#define BLUEFRUIT_UART_RTS_PIN -1 // Optional, set to -1 if unused
// HARDWARE UART SETTINGS
// ----------------------------------------------------------------------------------------------
// The following macros declare the HW serial port you are using. Uncomment
// this line if you are connecting the BLE to Leonardo/Micro or Flora
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_HWSERIAL_NAME Serial1
// SHARED UART SETTINGS
// ----------------------------------------------------------------------------------------------
// The following sets the optional Mode pin, its recommended but not required
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_UART_MODE_PIN 12 // Set to -1 if unused
// SHARED SPI SETTINGS
// ----------------------------------------------------------------------------------------------
// The following macros declare the pins to use for HW and SW SPI communication.
// SCK, MISO and MOSI should be connected to the HW SPI pins on the Uno when
// using HW SPI. This should be used with nRF51822 based Bluefruit LE modules
// that use SPI (Bluefruit LE SPI Friend).
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_SPI_CS 8
#define BLUEFRUIT_SPI_IRQ 7
#define BLUEFRUIT_SPI_RST 4
// SOFTWARE SPI SETTINGS
// ----------------------------------------------------------------------------------------------
// The following macros declare the pins to use for SW SPI communication.
// This should be used with nRF51822 based Bluefruit LE modules that use SPI
// (Bluefruit LE SPI Friend).
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_SPI_SCK 13
#define BLUEFRUIT_SPI_MISO 12
#define BLUEFRUIT_SPI_MOSI 11

View File

@@ -0,0 +1,851 @@
// Adafruit Circuit Playground Bluefruit LE Friend Firmata Firmware
//
// This is a basic 'standard firmata' firmware that allows digital IO and other
// control of some (but not all) Circuit Playground components. You can read
// the push buttons (digital pins 4, 19) and slide switch (pin 21). You can light
// up the onboard pin 13 LED, but you can't light the NeoPixels on the board
// with this sketch (standard firmata doesn't support NeoPixels right now).
//
// Note this sketch is customized to ONLY work with Circuit Playground. Trying
// to use this sketch on other boards will NOT work. Use the BluefruitLE_nrf51822
// example instead and customize it for your board.
//
// By default this sketch assumes you are connecting to a Bluefruit LE friend
// using a hardware serial connection which is easiest on Circuit Playground.
// The Flora Bluefruit LE module (https://www.adafruit.com/products/2487) is the
// best option as it can easily be connected to Circuit Playground with alligator
// clips.
//
// Make the following connections between the Bluefruit LE module and Circuit Playground:
// - Bluefruit LE RX -> Circuit Playground TX #1
// - Bluefruit LE TX -> Circuit Playground RX #0
// - Bluefruit LE 3.3V -> Circuit Playground 3.3V
// - Bluefruit LE GND -> Circuit Playground GND
// - Bluefruit LE MODE -> Circuit Playground #12 (or any other digital input
// on Circuit Playground, but make sure to modify BluefruitConfig.h too!)
//
// Finally make sure the Bluefruit LE slide switch is in the DATA position. This
// is VERY important and the sketch won't work if it's in the CMD command mode!
#include <Servo.h>
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_BLE_Firmata.h>
// Change this to whatever is the Serial console you want, either Serial or SerialUSB
#define FIRMATADEBUG Serial
// Pause for Serial console before beginning?
#define WAITFORSERIAL false
// Print all BLE interactions?
#define VERBOSE_MODE false
/************************ CONFIGURATION SECTION ***********************************/
// You don't need to change this, it's setup for Circuit Playground already:
uint8_t boards_digitaliopins[] = {2,3,4,5,6,9,10,13,19,21};
uint8_t boards_analogiopins[] = {A0, A4, A5}; // A0 == digital 14, etc
uint8_t boards_pwmpins[] = {5, 6, 9, 10, 13};
uint8_t boards_servopins[] = {9, 10};
uint8_t boards_i2cpins[] = {SDA, SCL};
#define TOTAL_PINS NUM_DIGITAL_PINS /* highest number in boards_digitaliopins MEMEFIXME:automate */
#define TOTAL_PORTS ((TOTAL_PINS + 7) / 8)
/***********************************************************/
#include "Adafruit_BLE_Firmata_Boards.h"
#include "Adafruit_BLE.h"
#include "Adafruit_BluefruitLE_SPI.h"
#include "Adafruit_BluefruitLE_UART.h"
#include "BluefruitConfig.h"
// Create the bluefruit object, either software serial...uncomment these lines
/*
SoftwareSerial bluefruitSS = SoftwareSerial(BLUEFRUIT_SWUART_TXD_PIN, BLUEFRUIT_SWUART_RXD_PIN);
Adafruit_BluefruitLE_UART bluefruit(bluefruitSS, BLUEFRUIT_UART_MODE_PIN,
BLUEFRUIT_UART_CTS_PIN, BLUEFRUIT_UART_RTS_PIN);
*/
/* ...or hardware serial, which does not need the RTS/CTS pins. Uncomment this line */
Adafruit_BluefruitLE_UART bluefruit(BLUEFRUIT_HWSERIAL_NAME, BLUEFRUIT_UART_MODE_PIN);
/* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user selected CS/IRQ/RST */
//Adafruit_BluefruitLE_SPI bluefruit(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);
/* ...software SPI, using SCK/MOSI/MISO user-defined SPI pins and then user selected CS/IRQ/RST */
//Adafruit_BluefruitLE_SPI bluefruit(BLUEFRUIT_SPI_SCK, BLUEFRUIT_SPI_MISO,
// BLUEFRUIT_SPI_MOSI, BLUEFRUIT_SPI_CS,
// BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);
#define AUTO_INPUT_PULLUPS true
// our current connection status
boolean lastBTLEstatus, BTLEstatus;
// make one instance for the user to use
Adafruit_BLE_FirmataClass BLE_Firmata = Adafruit_BLE_FirmataClass(bluefruit);
// A small helper
void error(const __FlashStringHelper*err) {
FIRMATADEBUG.println(err);
while (1);
}
/*==============================================================================
* GLOBAL VARIABLES
*============================================================================*/
/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting
int lastAnalogReads[NUM_ANALOG_INPUTS];
/* digital input ports */
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
/* pins configuration */
byte pinConfig[TOTAL_PINS]; // configuration of every pin
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
int pinState[TOTAL_PINS]; // any value that has been written
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
int samplingInterval = 200; // how often to run the main loop (in ms)
#define MINIMUM_SAMPLE_DELAY 150
#define ANALOG_SAMPLE_DELAY 50
/* i2c data */
struct i2c_device_info {
byte addr;
byte reg;
byte bytes;
};
/* for i2c read continuous more */
i2c_device_info query[MAX_QUERIES];
byte i2cRxData[32];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
unsigned int i2cReadDelayTime = 0; // default delay time between i2c read request and Wire.requestFrom()
Servo servos[MAX_SERVOS];
/*==============================================================================
* FUNCTIONS
*============================================================================*/
void readAndReportData(byte address, int theRegister, byte numBytes) {
// allow I2C requests that don't require a register read
// for example, some devices using an interrupt pin to signify new data available
// do not always require the register read so upon interrupt you call Wire.requestFrom()
if (theRegister != REGISTER_NOT_SPECIFIED) {
Wire.beginTransmission(address);
#if ARDUINO >= 100
Wire.write((byte)theRegister);
#else
Wire.send((byte)theRegister);
#endif
Wire.endTransmission();
delayMicroseconds(i2cReadDelayTime); // delay is necessary for some devices such as WiiNunchuck
} else {
theRegister = 0; // fill the register with a dummy value
}
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
// check to be sure correct number of bytes were returned by slave
if(numBytes == Wire.available()) {
i2cRxData[0] = address;
i2cRxData[1] = theRegister;
for (int i = 0; i < numBytes; i++) {
#if ARDUINO >= 100
i2cRxData[2 + i] = Wire.read();
#else
i2cRxData[2 + i] = Wire.receive();
#endif
}
}
else {
if(numBytes > Wire.available()) {
BLE_Firmata.sendString("I2C Read Error: Too many bytes received");
} else {
BLE_Firmata.sendString("I2C Read Error: Too few bytes received");
}
}
// send slave address, register and received bytes
BLE_Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}
void outputPort(byte portNumber, byte portValue, byte forceSend)
{
// pins not configured as INPUT are cleared to zeros
portValue = portValue & portConfigInputs[portNumber];
// only send if the value is different than previously sent
if(forceSend || previousPINs[portNumber] != portValue) {
//FIRMATADEBUG.print(F("Sending update for port ")); FIRMATADEBUG.print(portNumber); FIRMATADEBUG.print(" = 0x"); FIRMATADEBUG.println(portValue, HEX);
BLE_Firmata.sendDigitalPort(portNumber, portValue);
previousPINs[portNumber] = portValue;
}
}
/* -----------------------------------------------------------------------------
* check all the active digital inputs for change of state, then add any events
* to the Serial output queue using () */
void checkDigitalInputs(boolean forceSend = false)
{
/* Using non-looping code allows constants to be given to readPort().
* The compiler will apply substantial optimizations if the inputs
* to readPort() are compile-time constants. */
for (uint8_t i=0; i<TOTAL_PORTS; i++) {
if (reportPINs[i]) {
// FIRMATADEBUG.print("Reporting on port "); FIRMATADEBUG.print(i); FIRMATADEBUG.print(" mask 0x"); FIRMATADEBUG.println(portConfigInputs[i], HEX);
uint8_t x = BLE_Firmata.readPort(i, portConfigInputs[i]);
// FIRMATADEBUG.print("Read 0x"); FIRMATADEBUG.println(x, HEX);
outputPort(i, x, forceSend);
}
}
}
// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
* two bit-arrays that track Digital I/O and PWM status
*/
void setPinModeCallback(byte pin, int mode)
{
//FIRMATADEBUG.print("Setting pin #"); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(" to "); FIRMATADEBUG.println(mode);
if ((pinConfig[pin] == I2C) && (isI2CEnabled) && (mode != I2C)) {
// disable i2c so pins can be used for other functions
// the following if statements should reconfigure the pins properly
disableI2CPins();
}
if (BLE_Firmata.IS_PIN_SERVO(pin) && mode != SERVO && servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached()) {
servos[BLE_Firmata.PIN_TO_SERVO(pin)].detach();
}
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
reportAnalogCallback(BLE_Firmata.PIN_TO_ANALOG(pin), mode == ANALOG ? 1 : 0); // turn on/off reporting
}
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
if (mode == INPUT) {
portConfigInputs[pin/8] |= (1 << (pin & 7));
} else {
portConfigInputs[pin/8] &= ~(1 << (pin & 7));
}
// FIRMATADEBUG.print(F("Setting pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(F(" port config mask to = 0x"));
// FIRMATADEBUG.println(portConfigInputs[pin/8], HEX);
}
pinState[pin] = 0;
switch(mode) {
case ANALOG:
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to analog"));
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT); // disable output driver
}
pinConfig[pin] = ANALOG;
lastAnalogReads[BLE_Firmata.PIN_TO_ANALOG(pin)] = -1;
}
break;
case INPUT:
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to input"));
if (AUTO_INPUT_PULLUPS) {
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT_PULLUP); // disable output driver
} else {
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT); // disable output driver
}
pinConfig[pin] = INPUT;
// force sending state immediately
//delay(10);
//checkDigitalInputs(true);
}
break;
case OUTPUT:
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to output"));
digitalWrite(BLE_Firmata.PIN_TO_DIGITAL(pin), LOW); // disable PWM
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), OUTPUT);
pinConfig[pin] = OUTPUT;
}
break;
case PWM:
if (BLE_Firmata.IS_PIN_PWM(pin)) {
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to PWM"));
pinMode(BLE_Firmata.PIN_TO_PWM(pin), OUTPUT);
analogWrite(BLE_Firmata.PIN_TO_PWM(pin), 0);
pinConfig[pin] = PWM;
}
break;
case SERVO:
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
pinConfig[pin] = SERVO;
if (!servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached()) {
servos[BLE_Firmata.PIN_TO_SERVO(pin)].attach(BLE_Firmata.PIN_TO_DIGITAL(pin));
}
}
break;
case I2C:
if (BLE_Firmata.IS_PIN_I2C(pin)) {
// mark the pin as i2c
// the user must call I2C_CONFIG to enable I2C for a device
pinConfig[pin] = I2C;
}
break;
default:
FIRMATADEBUG.print(F("Unknown pin mode")); // TODO: put error msgs in EEPROM
}
// TODO: save status to EEPROM here, if changed
}
void analogWriteCallback(byte pin, int value)
{
if (pin < TOTAL_PINS) {
switch(pinConfig[pin]) {
case SERVO:
if (BLE_Firmata.IS_PIN_SERVO(pin))
servos[BLE_Firmata.PIN_TO_SERVO(pin)].write(value);
pinState[pin] = value;
break;
case PWM:
if (BLE_Firmata.IS_PIN_PWM(pin))
analogWrite(BLE_Firmata.PIN_TO_PWM(pin), value);
FIRMATADEBUG.print("pwm("); FIRMATADEBUG.print(BLE_Firmata.PIN_TO_PWM(pin)); FIRMATADEBUG.print(","); FIRMATADEBUG.print(value); FIRMATADEBUG.println(")");
pinState[pin] = value;
break;
}
}
}
void digitalWriteCallback(byte port, int value)
{
//FIRMATADEBUG.print("DWCx"); FIRMATADEBUG.print(port, HEX); FIRMATADEBUG.print(" "); FIRMATADEBUG.println(value);
byte pin, lastPin, mask=1, pinWriteMask=0;
if (port < TOTAL_PORTS) {
// create a mask of the pins on this port that are writable.
lastPin = port*8+8;
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
for (pin=port*8; pin < lastPin; pin++) {
// do not disturb non-digital pins (eg, Rx & Tx)
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
// only write to OUTPUT
// do not touch pins in PWM, ANALOG, SERVO or other modes
if (pinConfig[pin] == OUTPUT) {
pinWriteMask |= mask;
pinState[pin] = ((byte)value & mask) ? 1 : 0;
}
}
mask = mask << 1;
}
FIRMATADEBUG.print(F("Write digital port #")); FIRMATADEBUG.print(port);
FIRMATADEBUG.print(F(" = 0x")); FIRMATADEBUG.print(value, HEX);
FIRMATADEBUG.print(F(" mask = 0x")); FIRMATADEBUG.println(pinWriteMask, HEX);
BLE_Firmata.writePort(port, (byte)value, pinWriteMask);
}
}
// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
*/
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
if (analogPin < BLE_Firmata._num_analogiopins) {
if(value == 0) {
analogInputsToReport = analogInputsToReport &~ (1 << analogPin);
FIRMATADEBUG.print(F("Stop reporting analog pin #")); FIRMATADEBUG.println(analogPin);
} else {
analogInputsToReport |= (1 << analogPin);
FIRMATADEBUG.print(F("Will report analog pin #")); FIRMATADEBUG.println(analogPin);
}
}
// TODO: save status to EEPROM here, if changed
}
void reportDigitalCallback(byte port, int value)
{
if (port < TOTAL_PORTS) {
//FIRMATADEBUG.print(F("Will report 0x")); FIRMATADEBUG.print(value, HEX); FIRMATADEBUG.print(F(" digital mask on port ")); FIRMATADEBUG.println(port);
reportPINs[port] = (byte)value;
}
// do not disable analog reporting on these 8 pins, to allow some
// pins used for digital, others analog. Instead, allow both types
// of reporting to be enabled, but check if the pin is configured
// as analog when sampling the analog inputs. Likewise, while
// scanning digital pins, portConfigInputs will mask off values from any
// pins configured as analog
}
/*==============================================================================
* SYSEX-BASED commands
*============================================================================*/
void sysexCallback(byte command, byte argc, byte *argv)
{
byte mode;
byte slaveAddress;
byte slaveRegister;
byte data;
unsigned int delayTime;
FIRMATADEBUG.println("********** Sysex callback");
switch(command) {
case I2C_REQUEST:
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
//BLE_Firmata.sendString("10-bit addressing mode is not yet supported");
FIRMATADEBUG.println(F("10-bit addressing mode is not yet supported"));
return;
}
else {
slaveAddress = argv[0];
}
switch(mode) {
case I2C_WRITE:
Wire.beginTransmission(slaveAddress);
for (byte i = 2; i < argc; i += 2) {
data = argv[i] + (argv[i + 1] << 7);
#if ARDUINO >= 100
Wire.write(data);
#else
Wire.send(data);
#endif
}
Wire.endTransmission();
delayMicroseconds(70);
break;
case I2C_READ:
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
readAndReportData(slaveAddress, (int)slaveRegister, data);
}
else {
// a slave register is NOT specified
data = argv[2] + (argv[3] << 7); // bytes to read
readAndReportData(slaveAddress, (int)REGISTER_NOT_SPECIFIED, data);
}
break;
case I2C_READ_CONTINUOUSLY:
if ((queryIndex + 1) >= MAX_QUERIES) {
// too many queries, just ignore
BLE_Firmata.sendString("too many queries");
break;
}
queryIndex++;
query[queryIndex].addr = slaveAddress;
query[queryIndex].reg = argv[2] + (argv[3] << 7);
query[queryIndex].bytes = argv[4] + (argv[5] << 7);
break;
case I2C_STOP_READING:
byte queryIndexToSkip;
// if read continuous mode is enabled for only 1 i2c device, disable
// read continuous reporting for that device
if (queryIndex <= 0) {
queryIndex = -1;
} else {
// if read continuous mode is enabled for multiple devices,
// determine which device to stop reading and remove it's data from
// the array, shifiting other array data to fill the space
for (byte i = 0; i < queryIndex + 1; i++) {
if (query[i].addr = slaveAddress) {
queryIndexToSkip = i;
break;
}
}
for (byte i = queryIndexToSkip; i<queryIndex + 1; i++) {
if (i < MAX_QUERIES) {
query[i].addr = query[i+1].addr;
query[i].reg = query[i+1].addr;
query[i].bytes = query[i+1].bytes;
}
}
queryIndex--;
}
break;
default:
break;
}
break;
case I2C_CONFIG:
delayTime = (argv[0] + (argv[1] << 7));
if(delayTime > 0) {
i2cReadDelayTime = delayTime;
}
if (!isI2CEnabled) {
enableI2CPins();
}
break;
case SERVO_CONFIG:
if(argc > 4) {
// these vars are here for clarity, they'll optimized away by the compiler
byte pin = argv[0];
int minPulse = argv[1] + (argv[2] << 7);
int maxPulse = argv[3] + (argv[4] << 7);
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
if (servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached())
servos[BLE_Firmata.PIN_TO_SERVO(pin)].detach();
servos[BLE_Firmata.PIN_TO_SERVO(pin)].attach(BLE_Firmata.PIN_TO_DIGITAL(pin), minPulse, maxPulse);
setPinModeCallback(pin, SERVO);
}
}
break;
case SAMPLING_INTERVAL:
if (argc > 1) {
samplingInterval = argv[0] + (argv[1] << 7);
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
}
} else {
//BLE_Firmata.sendString("Not enough data");
}
break;
case EXTENDED_ANALOG:
if (argc > 1) {
int val = argv[1];
if (argc > 2) val |= (argv[2] << 7);
if (argc > 3) val |= (argv[3] << 14);
analogWriteCallback(argv[0], val);
}
break;
case CAPABILITY_QUERY:
bluefruit.write(START_SYSEX);
bluefruit.write(CAPABILITY_RESPONSE);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(START_SYSEX, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(CAPABILITY_RESPONSE, HEX);
delay(10);
for (byte pin=0; pin < TOTAL_PINS; pin++) {
//FIRMATADEBUG.print("\t#"); FIRMATADEBUG.println(pin);
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
bluefruit.write((byte)INPUT);
bluefruit.write(1);
bluefruit.write((byte)OUTPUT);
bluefruit.write(1);
/*
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(INPUT, HEX);
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(1, HEX);
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(OUTPUT, HEX);
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(1, HEX);
*/
delay(20);
} else {
bluefruit.write(127);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(127, HEX);
delay(20);
continue;
}
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
bluefruit.write(ANALOG);
bluefruit.write(10);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(ANALOG, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(10, HEX);
delay(20);
}
if (BLE_Firmata.IS_PIN_PWM(pin)) {
bluefruit.write(PWM);
bluefruit.write(8);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(PWM, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(8, HEX);
delay(20);
}
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
bluefruit.write(SERVO);
bluefruit.write(14);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(SERVO, HEX);FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(14, HEX);
delay(20);
}
if (BLE_Firmata.IS_PIN_I2C(pin)) {
bluefruit.write(I2C);
bluefruit.write(1); // to do: determine appropriate value
delay(20);
}
bluefruit.write(127);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(127, HEX);
}
bluefruit.write(END_SYSEX);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(END_SYSEX, HEX);
break;
case PIN_STATE_QUERY:
if (argc > 0) {
byte pin=argv[0];
bluefruit.write(START_SYSEX);
bluefruit.write(PIN_STATE_RESPONSE);
bluefruit.write(pin);
if (pin < TOTAL_PINS) {
bluefruit.write((byte)pinConfig[pin]);
bluefruit.write((byte)pinState[pin] & 0x7F);
if (pinState[pin] & 0xFF80) bluefruit.write((byte)(pinState[pin] >> 7) & 0x7F);
if (pinState[pin] & 0xC000) bluefruit.write((byte)(pinState[pin] >> 14) & 0x7F);
}
bluefruit.write(END_SYSEX);
}
break;
case ANALOG_MAPPING_QUERY:
FIRMATADEBUG.println("Analog mapping query");
bluefruit.write(START_SYSEX);
bluefruit.write(ANALOG_MAPPING_RESPONSE);
for (byte pin=0; pin < TOTAL_PINS; pin++) {
bluefruit.write(BLE_Firmata.IS_PIN_ANALOG(pin) ? BLE_Firmata.PIN_TO_ANALOG(pin) : 127);
}
bluefruit.write(END_SYSEX);
break;
}
}
void enableI2CPins()
{
byte i;
// is there a faster way to do this? would probaby require importing
// Arduino.h to get SCL and SDA pins
for (i=0; i < TOTAL_PINS; i++) {
if(BLE_Firmata.IS_PIN_I2C(i)) {
// mark pins as i2c so they are ignore in non i2c data requests
setPinModeCallback(i, I2C);
}
}
isI2CEnabled = true;
// is there enough time before the first I2C request to call this here?
Wire.begin();
}
/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
isI2CEnabled = false;
// disable read continuous mode for all devices
queryIndex = -1;
// uncomment the following if or when the end() method is added to Wire library
// Wire.end();
}
/*==============================================================================
* SETUP()
*============================================================================*/
void systemResetCallback()
{
// initialize a defalt state
FIRMATADEBUG.println(F("***RESET***"));
// TODO: option to load config from EEPROM instead of default
if (isI2CEnabled) {
disableI2CPins();
}
for (byte i=0; i < TOTAL_PORTS; i++) {
reportPINs[i] = false; // by default, reporting off
portConfigInputs[i] = 0; // until activated
previousPINs[i] = 0;
}
// pins with analog capability default to analog input
// otherwise, pins default to digital output
for (byte i=0; i < TOTAL_PINS; i++) {
if (BLE_Firmata.IS_PIN_ANALOG(i)) {
// turns off pullup, configures everything
setPinModeCallback(i, ANALOG);
} else {
// sets the output to 0, configures portConfigInputs
setPinModeCallback(i, INPUT);
}
}
// by default, do not report any analog inputs
analogInputsToReport = 0;
/* send digital inputs to set the initial state on the host computer,
* since once in the loop(), this firmware will only send on change */
/*
TODO: this can never execute, since no pins default to digital input
but it will be needed when/if we support EEPROM stored config
for (byte i=0; i < TOTAL_PORTS; i++) {
outputPort(i, readPort(i, portConfigInputs[i]), true);
}
*/
}
void setup()
{
if (WAITFORSERIAL) {
while (!FIRMATADEBUG) delay(1);
}
FIRMATADEBUG.begin(9600);
FIRMATADEBUG.println(F("Adafruit Bluefruit LE Firmata test"));
FIRMATADEBUG.print("Total pins: "); FIRMATADEBUG.println(NUM_DIGITAL_PINS);
FIRMATADEBUG.print("Analog pins: "); FIRMATADEBUG.println(sizeof(boards_analogiopins));
//for (uint8_t i=0; i<sizeof(boards_analogiopins); i++) {
// FIRMATADEBUG.println(boards_analogiopins[i]);
//}
BLE_Firmata.setUsablePins(boards_digitaliopins, sizeof(boards_digitaliopins),
boards_analogiopins, sizeof(boards_analogiopins),
boards_pwmpins, sizeof(boards_pwmpins),
boards_servopins, sizeof(boards_servopins), SDA, SCL);
/* Initialise the module */
FIRMATADEBUG.print(F("Initialising the Bluefruit LE module: "));
if ( !bluefruit.begin(VERBOSE_MODE) )
{
error(F("Couldn't find Bluefruit, make sure it's in CoMmanD mode & check wiring?"));
}
FIRMATADEBUG.println( F("OK!") );
/* Perform a factory reset to make sure everything is in a known state */
FIRMATADEBUG.println(F("Performing a factory reset: "));
if (! bluefruit.factoryReset() ){
error(F("Couldn't factory reset"));
}
/* Disable command echo from Bluefruit */
bluefruit.echo(false);
FIRMATADEBUG.println("Requesting Bluefruit info:");
/* Print Bluefruit information */
bluefruit.info();
FIRMATADEBUG.println("Setting name to BLE Firmata");
bluefruit.println("AT+GAPDEVNAME=BLE_Firmata");
BTLEstatus = false;
}
void firmataInit() {
FIRMATADEBUG.println(F("Init firmata"));
//BLE_Firmata.setFirmwareVersion(FIRMATA_MAJOR_VERSION, FIRMATA_MINOR_VERSION);
//FIRMATADEBUG.println(F("firmata analog"));
BLE_Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
//FIRMATADEBUG.println(F("firmata digital"));
BLE_Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
//FIRMATADEBUG.println(F("firmata analog report"));
BLE_Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
//FIRMATADEBUG.println(F("firmata digital report"));
BLE_Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
//FIRMATADEBUG.println(F("firmata pinmode"));
BLE_Firmata.attach(SET_PIN_MODE, setPinModeCallback);
//FIRMATADEBUG.println(F("firmata sysex"));
BLE_Firmata.attach(START_SYSEX, sysexCallback);
//FIRMATADEBUG.println(F("firmata reset"));
BLE_Firmata.attach(SYSTEM_RESET, systemResetCallback);
FIRMATADEBUG.println(F("Begin firmata"));
BLE_Firmata.begin();
systemResetCallback(); // reset to default config
}
/*==============================================================================
* LOOP()
*============================================================================*/
void loop()
{
delay(100);
// Link status check
if (! BTLEstatus) {
bluefruit.setMode(BLUEFRUIT_MODE_COMMAND);
BTLEstatus = bluefruit.isConnected();
bluefruit.setMode(BLUEFRUIT_MODE_DATA);
}
// Check if something has changed
if (BTLEstatus != lastBTLEstatus) {
// print it out!
if (BTLEstatus == true) {
FIRMATADEBUG.println(F("* Connected!"));
// initialize Firmata cleanly
bluefruit.setMode(BLUEFRUIT_MODE_DATA);
firmataInit();
}
if (BTLEstatus == false) {
FIRMATADEBUG.println(F("* Disconnected or advertising timed out"));
}
// OK set the last status change to this one
lastBTLEstatus = BTLEstatus;
}
// if not connected... bail
if (! BTLEstatus) {
delay(100);
return;
}
// For debugging, see if there's data on the serial console, we would forwad it to BTLE
if (FIRMATADEBUG.available()) {
bluefruit.write(FIRMATADEBUG.read());
}
// Onto the Firmata main loop
byte pin, analogPin;
/* DIGITALREAD - as fast as possible, check for changes and output them to the
* BTLE buffer using FIRMATADEBUG.print() */
checkDigitalInputs();
/* SERIALREAD - processing incoming messagse as soon as possible, while still
* checking digital inputs. */
while(BLE_Firmata.available()) {
// FIRMATADEBUG.println(F("*data available*"));
BLE_Firmata.processInput();
}
/* SEND FTDI WRITE BUFFER - make sure that the FTDI buffer doesn't go over
* 60 bytes. use a timer to sending an event character every 4 ms to
* trigger the buffer to dump. */
// make the sampling interval longer if we have more analog inputs!
uint8_t analogreportnums = 0;
for(uint8_t a=0; a<8; a++) {
if (analogInputsToReport & (1 << a)) {
analogreportnums++;
}
}
samplingInterval = (uint16_t)MINIMUM_SAMPLE_DELAY + (uint16_t)ANALOG_SAMPLE_DELAY * (1+analogreportnums);
currentMillis = millis();
if (currentMillis - previousMillis > samplingInterval) {
previousMillis += samplingInterval;
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
for(pin=0; pin<TOTAL_PINS; pin++) {
// FIRMATADEBUG.print("pin #"); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(" config = "); FIRMATADEBUG.println(pinConfig[pin]);
if (BLE_Firmata.IS_PIN_ANALOG(pin) && (pinConfig[pin] == ANALOG)) {
analogPin = BLE_Firmata.PIN_TO_ANALOG(pin);
if (analogInputsToReport & (1 << analogPin)) {
int currentRead = analogRead(analogPin);
if ((lastAnalogReads[analogPin] == -1) || (lastAnalogReads[analogPin] != currentRead)) {
//FIRMATADEBUG.print(F("Analog")); FIRMATADEBUG.print(analogPin); FIRMATADEBUG.print(F(" = ")); FIRMATADEBUG.println(currentRead);
BLE_Firmata.sendAnalog(analogPin, currentRead);
lastAnalogReads[analogPin] = currentRead;
}
}
}
}
// report i2c data for all device with read continuous mode enabled
if (queryIndex > -1) {
for (byte i = 0; i < queryIndex + 1; i++) {
readAndReportData(query[i].addr, query[i].reg, query[i].bytes);
}
}
}
}

View File

@@ -0,0 +1,9 @@
// Connect CLK/MISO/MOSI to hardware SPI
// e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11
#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RST 9
#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on Uno thats #2 or #3
// so we have digital 3-8 and analog 0-6 for use!

View File

@@ -0,0 +1,811 @@
#include <Servo.h>
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_BLE_Firmata.h>
#include "Adafruit_BLE_UART.h"
// Change this to whatever is the Serial console you want, either Serial or SerialUSB
#define FIRMATADEBUG Serial
// Pause for Serial console before beginning?
#define WAITFORSERIAL true
// Print all BLE interactions?
#define VERBOSE_MODE false
// Pullups on all input pins?
#define AUTO_INPUT_PULLUPS true
/************************ CONFIGURATION SECTION ***********************************/
/*
Don't forget to also change the BluefruitConfig.h for the SPI connection
and pinout you are using!
Then below, you can edit the list of pins that are available. Remove any pins
that are used for accessories or for talking to the BLE module!
*/
/************** For UNO + nRF8001 SPI breakout ************/
uint8_t boards_digitaliopins[] = {3, 4, 5, 6, 7, 8, A0, A1, A2, A3, A4, A5};
#if defined(__AVR_ATmega328P__)
// Standard setup for UNO, no need to tweak
uint8_t boards_analogiopins[] = {A0, A1, A2, A3, A4, A5}; // A0 == digital 14, etc
uint8_t boards_pwmpins[] = {3, 5, 6, 9, 10, 11};
uint8_t boards_servopins[] = {9, 10};
uint8_t boards_i2cpins[] = {SDA, SCL};
#elif defined(__AVR_ATmega32U4__)
uint8_t boards_analogiopins[] = {A0, A1, A2, A3, A4, A5}; // A0 == digital 14, etc
uint8_t boards_pwmpins[] = {3, 5, 6, 9, 10, 11, 13};
uint8_t boards_servopins[] = {9, 10};
uint8_t boards_i2cpins[] = {SDA, SCL};
#elif defined(__SAMD21G18A__)
#define SDA PIN_WIRE_SDA
#define SCL PIN_WIRE_SCL
uint8_t boards_analogiopins[] = {PIN_A0, PIN_A1, PIN_A2, PIN_A3, PIN_A4, PIN_A5,PIN_A6, PIN_A7}; // A0 == digital 14, etc
uint8_t boards_pwmpins[] = {3,4,5,6,8,10,11,12,A0,A1,A2,A3,A4,A5};
uint8_t boards_servopins[] = {9, 10};
uint8_t boards_i2cpins[] = {SDA, SCL};
#define NUM_DIGITAL_PINS 26
#endif
#define TOTAL_PINS NUM_DIGITAL_PINS /* highest number in boards_digitaliopins MEMEFIXME:automate */
#define TOTAL_PORTS ((TOTAL_PINS + 7) / 8)
/***********************************************************/
#include "Adafruit_BLE_Firmata_Boards.h"
#include "BluefruitConfig.h"
// Create the bluetooth breakout instance, set the pins in the BluefruitConfig.h file!
Adafruit_BLE_UART bluefruit = Adafruit_BLE_UART(ADAFRUITBLE_REQ, ADAFRUITBLE_RDY, ADAFRUITBLE_RST);
// our current connection status
aci_evt_opcode_t lastBTLEstatus, BTLEstatus;
// make one instance for the user to use
Adafruit_BLE_FirmataClass BLE_Firmata = Adafruit_BLE_FirmataClass(bluefruit);
// A small helper
void error(const __FlashStringHelper*err) {
FIRMATADEBUG.println(err);
while (1);
}
/*==============================================================================
* GLOBAL VARIABLES
*============================================================================*/
/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting
int lastAnalogReads[NUM_ANALOG_INPUTS];
/* digital input ports */
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
/* pins configuration */
byte pinConfig[TOTAL_PINS]; // configuration of every pin
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
int pinState[TOTAL_PINS]; // any value that has been written
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
int samplingInterval = 200; // how often to run the main loop (in ms)
#define MINIMUM_SAMPLE_DELAY 150
#define ANALOG_SAMPLE_DELAY 50
/* i2c data */
struct i2c_device_info {
byte addr;
byte reg;
byte bytes;
};
/* for i2c read continuous more */
i2c_device_info query[MAX_QUERIES];
byte i2cRxData[32];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
unsigned int i2cReadDelayTime = 0; // default delay time between i2c read request and Wire.requestFrom()
Servo servos[MAX_SERVOS];
/*==============================================================================
* FUNCTIONS
*============================================================================*/
void readAndReportData(byte address, int theRegister, byte numBytes) {
// allow I2C requests that don't require a register read
// for example, some devices using an interrupt pin to signify new data available
// do not always require the register read so upon interrupt you call Wire.requestFrom()
if (theRegister != REGISTER_NOT_SPECIFIED) {
Wire.beginTransmission(address);
#if ARDUINO >= 100
Wire.write((byte)theRegister);
#else
Wire.send((byte)theRegister);
#endif
Wire.endTransmission();
delayMicroseconds(i2cReadDelayTime); // delay is necessary for some devices such as WiiNunchuck
} else {
theRegister = 0; // fill the register with a dummy value
}
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
// check to be sure correct number of bytes were returned by slave
if(numBytes == Wire.available()) {
i2cRxData[0] = address;
i2cRxData[1] = theRegister;
for (int i = 0; i < numBytes; i++) {
#if ARDUINO >= 100
i2cRxData[2 + i] = Wire.read();
#else
i2cRxData[2 + i] = Wire.receive();
#endif
}
}
else {
if(numBytes > Wire.available()) {
BLE_Firmata.sendString("I2C Read Error: Too many bytes received");
} else {
BLE_Firmata.sendString("I2C Read Error: Too few bytes received");
}
}
// send slave address, register and received bytes
BLE_Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}
void outputPort(byte portNumber, byte portValue, byte forceSend)
{
// pins not configured as INPUT are cleared to zeros
portValue = portValue & portConfigInputs[portNumber];
// only send if the value is different than previously sent
if(forceSend || previousPINs[portNumber] != portValue) {
//FIRMATADEBUG.print(F("Sending update for port ")); FIRMATADEBUG.print(portNumber); FIRMATADEBUG.print(" = 0x"); FIRMATADEBUG.println(portValue, HEX);
BLE_Firmata.sendDigitalPort(portNumber, portValue);
previousPINs[portNumber] = portValue;
}
}
/* -----------------------------------------------------------------------------
* check all the active digital inputs for change of state, then add any events
* to the Serial output queue using () */
void checkDigitalInputs(boolean forceSend = false)
{
/* Using non-looping code allows constants to be given to readPort().
* The compiler will apply substantial optimizations if the inputs
* to readPort() are compile-time constants. */
for (uint8_t i=0; i<TOTAL_PORTS; i++) {
if (reportPINs[i]) {
// FIRMATADEBUG.print("Reporting on port "); FIRMATADEBUG.print(i); FIRMATADEBUG.print(" mask 0x"); FIRMATADEBUG.println(portConfigInputs[i], HEX);
uint8_t x = BLE_Firmata.readPort(i, portConfigInputs[i]);
// FIRMATADEBUG.print("Read 0x"); FIRMATADEBUG.println(x, HEX);
outputPort(i, x, forceSend);
}
}
}
// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
* two bit-arrays that track Digital I/O and PWM status
*/
void setPinModeCallback(byte pin, int mode)
{
//FIRMATADEBUG.print("Setting pin #"); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(" to "); FIRMATADEBUG.println(mode);
if ((pinConfig[pin] == I2C) && (isI2CEnabled) && (mode != I2C)) {
// disable i2c so pins can be used for other functions
// the following if statements should reconfigure the pins properly
disableI2CPins();
}
if (BLE_Firmata.IS_PIN_SERVO(pin) && mode != SERVO && servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached()) {
servos[BLE_Firmata.PIN_TO_SERVO(pin)].detach();
}
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
reportAnalogCallback(BLE_Firmata.PIN_TO_ANALOG(pin), mode == ANALOG ? 1 : 0); // turn on/off reporting
}
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
if (mode == INPUT) {
portConfigInputs[pin/8] |= (1 << (pin & 7));
} else {
portConfigInputs[pin/8] &= ~(1 << (pin & 7));
}
// FIRMATADEBUG.print(F("Setting pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(F(" port config mask to = 0x"));
// FIRMATADEBUG.println(portConfigInputs[pin/8], HEX);
}
pinState[pin] = 0;
switch(mode) {
case ANALOG:
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
//FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to analog"));
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT); // disable output driver
}
pinConfig[pin] = ANALOG;
lastAnalogReads[BLE_Firmata.PIN_TO_ANALOG(pin)] = -1;
}
break;
case INPUT:
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
//FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to input"));
if (AUTO_INPUT_PULLUPS) {
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT_PULLUP); // disable output driver
} else {
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT); // disable output driver
}
pinConfig[pin] = INPUT;
// force sending state immediately
//delay(10);
//checkDigitalInputs(true);
}
break;
case OUTPUT:
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
//FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to output"));
digitalWrite(BLE_Firmata.PIN_TO_DIGITAL(pin), LOW); // disable PWM
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), OUTPUT);
pinConfig[pin] = OUTPUT;
}
break;
case PWM:
if (BLE_Firmata.IS_PIN_PWM(pin)) {
//FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to PWM"));
pinMode(BLE_Firmata.PIN_TO_PWM(pin), OUTPUT);
analogWrite(BLE_Firmata.PIN_TO_PWM(pin), 0);
pinConfig[pin] = PWM;
}
break;
case SERVO:
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
pinConfig[pin] = SERVO;
if (!servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached()) {
servos[BLE_Firmata.PIN_TO_SERVO(pin)].attach(BLE_Firmata.PIN_TO_DIGITAL(pin));
}
}
break;
case I2C:
if (BLE_Firmata.IS_PIN_I2C(pin)) {
// mark the pin as i2c
// the user must call I2C_CONFIG to enable I2C for a device
pinConfig[pin] = I2C;
}
break;
default:
FIRMATADEBUG.print(F("Unknown pin mode")); // TODO: put error msgs in EEPROM
}
// TODO: save status to EEPROM here, if changed
}
void analogWriteCallback(byte pin, int value)
{
if (pin < TOTAL_PINS) {
switch(pinConfig[pin]) {
case SERVO:
if (BLE_Firmata.IS_PIN_SERVO(pin))
servos[BLE_Firmata.PIN_TO_SERVO(pin)].write(value);
pinState[pin] = value;
break;
case PWM:
if (BLE_Firmata.IS_PIN_PWM(pin))
analogWrite(BLE_Firmata.PIN_TO_PWM(pin), value);
//FIRMATADEBUG.print("pwm("); FIRMATADEBUG.print(BLE_Firmata.PIN_TO_PWM(pin)); FIRMATADEBUG.print(","); FIRMATADEBUG.print(value); FIRMATADEBUG.println(")");
pinState[pin] = value;
break;
}
}
}
void digitalWriteCallback(byte port, int value)
{
//FIRMATADEBUG.print("DWCx"); FIRMATADEBUG.print(port, HEX); FIRMATADEBUG.print(" "); FIRMATADEBUG.println(value);
byte pin, lastPin, mask=1, pinWriteMask=0;
if (port < TOTAL_PORTS) {
// create a mask of the pins on this port that are writable.
lastPin = port*8+8;
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
for (pin=port*8; pin < lastPin; pin++) {
// do not disturb non-digital pins (eg, Rx & Tx)
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
// only write to OUTPUT
// do not touch pins in PWM, ANALOG, SERVO or other modes
if (pinConfig[pin] == OUTPUT) {
pinWriteMask |= mask;
pinState[pin] = ((byte)value & mask) ? 1 : 0;
}
}
mask = mask << 1;
}
//FIRMATADEBUG.print(F("Write digital port #")); FIRMATADEBUG.print(port);
//FIRMATADEBUG.print(F(" = 0x")); FIRMATADEBUG.print(value, HEX);
//FIRMATADEBUG.print(F(" mask = 0x")); FIRMATADEBUG.println(pinWriteMask, HEX);
BLE_Firmata.writePort(port, (byte)value, pinWriteMask);
}
}
// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
*/
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
if (analogPin < BLE_Firmata._num_analogiopins) {
if(value == 0) {
analogInputsToReport = analogInputsToReport &~ (1 << analogPin);
//FIRMATADEBUG.print(F("Stop reporting analog pin #")); FIRMATADEBUG.println(analogPin);
} else {
analogInputsToReport |= (1 << analogPin);
//FIRMATADEBUG.print(F("Will report analog pin #")); FIRMATADEBUG.println(analogPin);
}
}
// TODO: save status to EEPROM here, if changed
}
void reportDigitalCallback(byte port, int value)
{
if (port < TOTAL_PORTS) {
//FIRMATADEBUG.print(F("Will report 0x")); FIRMATADEBUG.print(value, HEX); FIRMATADEBUG.print(F(" digital mask on port ")); FIRMATADEBUG.println(port);
reportPINs[port] = (byte)value;
}
// do not disable analog reporting on these 8 pins, to allow some
// pins used for digital, others analog. Instead, allow both types
// of reporting to be enabled, but check if the pin is configured
// as analog when sampling the analog inputs. Likewise, while
// scanning digital pins, portConfigInputs will mask off values from any
// pins configured as analog
}
/*==============================================================================
* SYSEX-BASED commands
*============================================================================*/
void sysexCallback(byte command, byte argc, byte *argv)
{
byte mode;
byte slaveAddress;
byte slaveRegister;
byte data;
unsigned int delayTime;
FIRMATADEBUG.println("********** Sysex callback");
switch(command) {
case I2C_REQUEST:
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
//BLE_Firmata.sendString("10-bit addressing mode is not yet supported");
//FIRMATADEBUG.println(F("10-bit addressing mode is not yet supported"));
return;
}
else {
slaveAddress = argv[0];
}
switch(mode) {
case I2C_WRITE:
Wire.beginTransmission(slaveAddress);
for (byte i = 2; i < argc; i += 2) {
data = argv[i] + (argv[i + 1] << 7);
#if ARDUINO >= 100
Wire.write(data);
#else
Wire.send(data);
#endif
}
Wire.endTransmission();
delayMicroseconds(70);
break;
case I2C_READ:
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
readAndReportData(slaveAddress, (int)slaveRegister, data);
}
else {
// a slave register is NOT specified
data = argv[2] + (argv[3] << 7); // bytes to read
readAndReportData(slaveAddress, (int)REGISTER_NOT_SPECIFIED, data);
}
break;
case I2C_READ_CONTINUOUSLY:
if ((queryIndex + 1) >= MAX_QUERIES) {
// too many queries, just ignore
BLE_Firmata.sendString("too many queries");
break;
}
queryIndex++;
query[queryIndex].addr = slaveAddress;
query[queryIndex].reg = argv[2] + (argv[3] << 7);
query[queryIndex].bytes = argv[4] + (argv[5] << 7);
break;
case I2C_STOP_READING:
byte queryIndexToSkip;
// if read continuous mode is enabled for only 1 i2c device, disable
// read continuous reporting for that device
if (queryIndex <= 0) {
queryIndex = -1;
} else {
// if read continuous mode is enabled for multiple devices,
// determine which device to stop reading and remove it's data from
// the array, shifiting other array data to fill the space
for (byte i = 0; i < queryIndex + 1; i++) {
if (query[i].addr = slaveAddress) {
queryIndexToSkip = i;
break;
}
}
for (byte i = queryIndexToSkip; i<queryIndex + 1; i++) {
if (i < MAX_QUERIES) {
query[i].addr = query[i+1].addr;
query[i].reg = query[i+1].addr;
query[i].bytes = query[i+1].bytes;
}
}
queryIndex--;
}
break;
default:
break;
}
break;
case I2C_CONFIG:
delayTime = (argv[0] + (argv[1] << 7));
if(delayTime > 0) {
i2cReadDelayTime = delayTime;
}
if (!isI2CEnabled) {
enableI2CPins();
}
break;
case SERVO_CONFIG:
if(argc > 4) {
// these vars are here for clarity, they'll optimized away by the compiler
byte pin = argv[0];
int minPulse = argv[1] + (argv[2] << 7);
int maxPulse = argv[3] + (argv[4] << 7);
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
if (servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached())
servos[BLE_Firmata.PIN_TO_SERVO(pin)].detach();
servos[BLE_Firmata.PIN_TO_SERVO(pin)].attach(BLE_Firmata.PIN_TO_DIGITAL(pin), minPulse, maxPulse);
setPinModeCallback(pin, SERVO);
}
}
break;
case SAMPLING_INTERVAL:
if (argc > 1) {
samplingInterval = argv[0] + (argv[1] << 7);
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
}
} else {
//BLE_Firmata.sendString("Not enough data");
}
break;
case EXTENDED_ANALOG:
if (argc > 1) {
int val = argv[1];
if (argc > 2) val |= (argv[2] << 7);
if (argc > 3) val |= (argv[3] << 14);
analogWriteCallback(argv[0], val);
}
break;
case CAPABILITY_QUERY:
bluefruit.write(START_SYSEX);
bluefruit.write(CAPABILITY_RESPONSE);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(START_SYSEX, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(CAPABILITY_RESPONSE, HEX);
delay(10);
for (byte pin=0; pin < TOTAL_PINS; pin++) {
//FIRMATADEBUG.print("\t#"); FIRMATADEBUG.println(pin);
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
bluefruit.write((byte)INPUT);
bluefruit.write(1);
bluefruit.write((byte)OUTPUT);
bluefruit.write(1);
/*
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(INPUT, HEX);
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(1, HEX);
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(OUTPUT, HEX);
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(1, HEX);
*/
delay(20);
} else {
bluefruit.write(127);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(127, HEX);
delay(20);
continue;
}
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
bluefruit.write(ANALOG);
bluefruit.write(10);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(ANALOG, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(10, HEX);
delay(20);
}
if (BLE_Firmata.IS_PIN_PWM(pin)) {
bluefruit.write(PWM);
bluefruit.write(8);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(PWM, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(8, HEX);
delay(20);
}
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
bluefruit.write(SERVO);
bluefruit.write(14);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(SERVO, HEX);FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(14, HEX);
delay(20);
}
if (BLE_Firmata.IS_PIN_I2C(pin)) {
bluefruit.write(I2C);
bluefruit.write(1); // to do: determine appropriate value
delay(20);
}
bluefruit.write(127);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(127, HEX);
}
bluefruit.write(END_SYSEX);
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(END_SYSEX, HEX);
break;
case PIN_STATE_QUERY:
if (argc > 0) {
byte pin=argv[0];
bluefruit.write(START_SYSEX);
bluefruit.write(PIN_STATE_RESPONSE);
bluefruit.write(pin);
if (pin < TOTAL_PINS) {
bluefruit.write((byte)pinConfig[pin]);
bluefruit.write((byte)pinState[pin] & 0x7F);
if (pinState[pin] & 0xFF80) bluefruit.write((byte)(pinState[pin] >> 7) & 0x7F);
if (pinState[pin] & 0xC000) bluefruit.write((byte)(pinState[pin] >> 14) & 0x7F);
}
bluefruit.write(END_SYSEX);
}
break;
case ANALOG_MAPPING_QUERY:
//FIRMATADEBUG.println("Analog mapping query");
bluefruit.write(START_SYSEX);
bluefruit.write(ANALOG_MAPPING_RESPONSE);
for (byte pin=0; pin < TOTAL_PINS; pin++) {
bluefruit.write(BLE_Firmata.IS_PIN_ANALOG(pin) ? BLE_Firmata.PIN_TO_ANALOG(pin) : 127);
}
bluefruit.write(END_SYSEX);
break;
}
}
void enableI2CPins()
{
byte i;
// is there a faster way to do this? would probaby require importing
// Arduino.h to get SCL and SDA pins
for (i=0; i < TOTAL_PINS; i++) {
if(BLE_Firmata.IS_PIN_I2C(i)) {
// mark pins as i2c so they are ignore in non i2c data requests
setPinModeCallback(i, I2C);
}
}
isI2CEnabled = true;
// is there enough time before the first I2C request to call this here?
Wire.begin();
}
/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
isI2CEnabled = false;
// disable read continuous mode for all devices
queryIndex = -1;
// uncomment the following if or when the end() method is added to Wire library
// Wire.end();
}
/*==============================================================================
* SETUP()
*============================================================================*/
void systemResetCallback()
{
// initialize a defalt state
FIRMATADEBUG.println(F("***RESET***"));
// TODO: option to load config from EEPROM instead of default
if (isI2CEnabled) {
disableI2CPins();
}
for (byte i=0; i < TOTAL_PORTS; i++) {
reportPINs[i] = false; // by default, reporting off
portConfigInputs[i] = 0; // until activated
previousPINs[i] = 0;
}
// pins with analog capability default to analog input
// otherwise, pins default to digital output
for (byte i=0; i < TOTAL_PINS; i++) {
if (BLE_Firmata.IS_PIN_ANALOG(i)) {
// turns off pullup, configures everything
setPinModeCallback(i, ANALOG);
} else {
// sets the output to 0, configures portConfigInputs
setPinModeCallback(i, INPUT);
}
}
// by default, do not report any analog inputs
analogInputsToReport = 0;
/* send digital inputs to set the initial state on the host computer,
* since once in the loop(), this firmware will only send on change */
/*
TODO: this can never execute, since no pins default to digital input
but it will be needed when/if we support EEPROM stored config
for (byte i=0; i < TOTAL_PORTS; i++) {
outputPort(i, readPort(i, portConfigInputs[i]), true);
}
*/
}
void setup()
{
if (WAITFORSERIAL) {
while (!FIRMATADEBUG) delay(1);
}
FIRMATADEBUG.begin(9600);
FIRMATADEBUG.println(F("Adafruit Bluefruit nRF8001 Firmata test"));
FIRMATADEBUG.print("Total pins: "); FIRMATADEBUG.println(NUM_DIGITAL_PINS);
FIRMATADEBUG.print("Analog pins: "); FIRMATADEBUG.println(sizeof(boards_analogiopins));
//for (uint8_t i=0; i<sizeof(boards_analogiopins); i++) {
// FIRMATADEBUG.println(boards_analogiopins[i]);
//}
BLE_Firmata.setUsablePins(boards_digitaliopins, sizeof(boards_digitaliopins),
boards_analogiopins, sizeof(boards_analogiopins),
boards_pwmpins, sizeof(boards_pwmpins),
boards_servopins, sizeof(boards_servopins), SDA, SCL);
/* Initialise the module */
FIRMATADEBUG.print(F("Init nRF8001: "));
if (! bluefruit.begin()) {
error(F("Failed"));
}
bluefruit.setDeviceName("ADA_BLE");
FIRMATADEBUG.println(F("Done"));
BTLEstatus = lastBTLEstatus = ACI_EVT_DISCONNECTED;
}
void firmataInit() {
FIRMATADEBUG.println(F("Init firmata"));
//BLE_Firmata.setFirmwareVersion(FIRMATA_MAJOR_VERSION, FIRMATA_MINOR_VERSION);
//FIRMATADEBUG.println(F("firmata analog"));
BLE_Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
//FIRMATADEBUG.println(F("firmata digital"));
BLE_Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
//FIRMATADEBUG.println(F("firmata analog report"));
BLE_Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
//FIRMATADEBUG.println(F("firmata digital report"));
BLE_Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
//FIRMATADEBUG.println(F("firmata pinmode"));
BLE_Firmata.attach(SET_PIN_MODE, setPinModeCallback);
//FIRMATADEBUG.println(F("firmata sysex"));
BLE_Firmata.attach(START_SYSEX, sysexCallback);
//FIRMATADEBUG.println(F("firmata reset"));
BLE_Firmata.attach(SYSTEM_RESET, systemResetCallback);
FIRMATADEBUG.println(F("Begin firmata"));
BLE_Firmata.begin();
systemResetCallback(); // reset to default config
}
/*==============================================================================
* LOOP()
*============================================================================*/
void loop()
{
// Check the BTLE link, how're we doing?
bluefruit.pollACI();
// Link status check
BTLEstatus = bluefruit.getState();
// Check if something has changed
if (BTLEstatus != lastBTLEstatus) {
// print it out!
if (BTLEstatus == ACI_EVT_DEVICE_STARTED) {
FIRMATADEBUG.println(F("* Advertising"));
}
if (BTLEstatus == ACI_EVT_CONNECTED) {
FIRMATADEBUG.println(F("* Connected!"));
// initialize Firmata cleanly
firmataInit();
}
if (BTLEstatus == ACI_EVT_DISCONNECTED) {
FIRMATADEBUG.println(F("* Disconnected"));
}
// OK set the last status change to this one
lastBTLEstatus = BTLEstatus;
}
// if not connected... bail
if (BTLEstatus != ACI_EVT_CONNECTED) {
delay(100);
return;
}
// For debugging, see if there's data on the serial console, we would forwad it to BTLE
if (FIRMATADEBUG.available()) {
bluefruit.write(FIRMATADEBUG.read());
}
// Onto the Firmata main loop
byte pin, analogPin;
/* DIGITALREAD - as fast as possible, check for changes and output them to the
* BTLE buffer using FIRMATADEBUG.print() */
checkDigitalInputs();
/* SERIALREAD - processing incoming messagse as soon as possible, while still
* checking digital inputs. */
while(BLE_Firmata.available()) {
//FIRMATADEBUG.println(F("*data available*"));
BLE_Firmata.processInput();
}
/* SEND FTDI WRITE BUFFER - make sure that the FTDI buffer doesn't go over
* 60 bytes. use a timer to sending an event character every 4 ms to
* trigger the buffer to dump. */
// make the sampling interval longer if we have more analog inputs!
uint8_t analogreportnums = 0;
for(uint8_t a=0; a<8; a++) {
if (analogInputsToReport & (1 << a)) {
analogreportnums++;
}
}
samplingInterval = (uint16_t)MINIMUM_SAMPLE_DELAY + (uint16_t)ANALOG_SAMPLE_DELAY * (1+analogreportnums);
currentMillis = millis();
if (currentMillis - previousMillis > samplingInterval) {
previousMillis += samplingInterval;
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
for(pin=0; pin<TOTAL_PINS; pin++) {
// FIRMATADEBUG.print("pin #"); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(" config = "); FIRMATADEBUG.println(pinConfig[pin]);
if (BLE_Firmata.IS_PIN_ANALOG(pin) && (pinConfig[pin] == ANALOG)) {
analogPin = BLE_Firmata.PIN_TO_ANALOG(pin);
if (analogInputsToReport & (1 << analogPin)) {
int currentRead = analogRead(analogPin);
if ((lastAnalogReads[analogPin] == -1) || (lastAnalogReads[analogPin] != currentRead)) {
//FIRMATADEBUG.print(F("Analog")); FIRMATADEBUG.print(analogPin); FIRMATADEBUG.print(F(" = ")); FIRMATADEBUG.println(currentRead);
BLE_Firmata.sendAnalog(analogPin, currentRead);
lastAnalogReads[analogPin] = currentRead;
}
}
}
}
// report i2c data for all device with read continuous mode enabled
if (queryIndex > -1) {
for (byte i = 0; i < queryIndex + 1; i++) {
readAndReportData(query[i].addr, query[i].reg, query[i].bytes);
}
}
}
}

View File

@@ -0,0 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

View File

@@ -0,0 +1,273 @@
# Arduino makefile
#
# This makefile allows you to build sketches from the command line
# without the Arduino environment (or Java).
#
# The Arduino environment does preliminary processing on a sketch before
# compiling it. If you're using this makefile instead, you'll need to do
# a few things differently:
#
# - Give your program's file a .cpp extension (e.g. foo.cpp).
#
# - Put this line at top of your code: #include <WProgram.h>
#
# - Write prototypes for all your functions (or define them before you
# call them). A prototype declares the types of parameters a
# function will take and what type of value it will return. This
# means that you can have a call to a function before the definition
# of the function. A function prototype looks like the first line of
# the function, with a semi-colon at the end. For example:
# int digitalRead(int pin);
#
# Instructions for using the makefile:
#
# 1. Copy this file into the folder with your sketch.
#
# 2. Below, modify the line containing "TARGET" to refer to the name of
# of your program's file without an extension (e.g. TARGET = foo).
#
# 3. Modify the line containg "ARDUINO" to point the directory that
# contains the Arduino core (for normal Arduino installations, this
# is the hardware/cores/arduino sub-directory).
#
# 4. Modify the line containing "PORT" to refer to the filename
# representing the USB or serial connection to your Arduino board
# (e.g. PORT = /dev/tty.USB0). If the exact name of this file
# changes, you can use * as a wildcard (e.g. PORT = /dev/tty.USB*).
#
# 5. At the command line, change to the directory containing your
# program's file and the makefile.
#
# 6. Type "make" and press enter to compile/verify your program.
#
# 7. Type "make upload", reset your Arduino board, and press enter to
# upload your program to the Arduino board.
#
# $Id: Makefile,v 1.7 2007/04/13 05:28:23 eighthave Exp $
PORT = /dev/tty.usbserial-*
TARGET := $(shell pwd | sed 's|.*/\(.*\)|\1|')
ARDUINO = /Applications/arduino
ARDUINO_SRC = $(ARDUINO)/hardware/cores/arduino
ARDUINO_LIB_SRC = $(ARDUINO)/hardware/libraries
ARDUINO_TOOLS = $(ARDUINO)/hardware/tools
INCLUDE = -I$(ARDUINO_SRC) -I$(ARDUINO)/hardware/tools/avr/avr/include \
-I$(ARDUINO_LIB_SRC)/EEPROM \
-I$(ARDUINO_LIB_SRC)/Firmata \
-I$(ARDUINO_LIB_SRC)/Matrix \
-I$(ARDUINO_LIB_SRC)/Servo \
-I$(ARDUINO_LIB_SRC)/Wire \
-I$(ARDUINO_LIB_SRC)
SRC = $(wildcard $(ARDUINO_SRC)/*.c)
CXXSRC = applet/$(TARGET).cpp $(ARDUINO_SRC)/HardwareSerial.cpp \
$(ARDUINO_LIB_SRC)/EEPROM/EEPROM.cpp \
$(ARDUINO_LIB_SRC)/Firmata/Firmata.cpp \
$(ARDUINO_LIB_SRC)/Servo/Servo.cpp \
$(ARDUINO_SRC)/Print.cpp \
$(ARDUINO_SRC)/WMath.cpp
HEADERS = $(wildcard $(ARDUINO_SRC)/*.h) $(wildcard $(ARDUINO_LIB_SRC)/*/*.h)
MCU = atmega168
#MCU = atmega8
F_CPU = 16000000
FORMAT = ihex
UPLOAD_RATE = 19200
# Name of this Makefile (used for "make depend").
MAKEFILE = Makefile
# Debugging format.
# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.
# AVR (extended) COFF requires stabs, plus an avr-objcopy run.
DEBUG = stabs
OPT = s
# Place -D or -U options here
CDEFS = -DF_CPU=$(F_CPU)
CXXDEFS = -DF_CPU=$(F_CPU)
# Compiler flag to set the C Standard level.
# c89 - "ANSI" C
# gnu89 - c89 plus GCC extensions
# c99 - ISO C99 standard (not yet fully implemented)
# gnu99 - c99 plus GCC extensions
CSTANDARD = -std=gnu99
CDEBUG = -g$(DEBUG)
CWARN = -Wall -Wstrict-prototypes
CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)
CFLAGS = $(CDEBUG) $(CDEFS) $(INCLUDE) -O$(OPT) $(CWARN) $(CSTANDARD) $(CEXTRA)
CXXFLAGS = $(CDEFS) $(INCLUDE) -O$(OPT)
#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs
LDFLAGS =
# Programming support using avrdude. Settings and variables.
AVRDUDE_PROGRAMMER = stk500
AVRDUDE_PORT = $(PORT)
AVRDUDE_WRITE_FLASH = -U flash:w:applet/$(TARGET).hex
AVRDUDE_FLAGS = -F -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER) \
-b $(UPLOAD_RATE) -q -V
# Program settings
ARDUINO_AVR_BIN = $(ARDUINO_TOOLS)/avr/bin
CC = $(ARDUINO_AVR_BIN)/avr-gcc
CXX = $(ARDUINO_AVR_BIN)/avr-g++
OBJCOPY = $(ARDUINO_AVR_BIN)/avr-objcopy
OBJDUMP = $(ARDUINO_AVR_BIN)/avr-objdump
SIZE = $(ARDUINO_AVR_BIN)/avr-size
NM = $(ARDUINO_AVR_BIN)/avr-nm
#AVRDUDE = $(ARDUINO_AVR_BIN)/avrdude
AVRDUDE = avrdude
REMOVE = rm -f
MV = mv -f
# Define all object files.
OBJ = $(SRC:.c=.o) $(CXXSRC:.cpp=.o) $(ASRC:.S=.o)
# Define all listing files.
LST = $(ASRC:.S=.lst) $(CXXSRC:.cpp=.lst) $(SRC:.c=.lst)
# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)
ALL_CXXFLAGS = -mmcu=$(MCU) -I. $(CXXFLAGS)
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
# Default target.
all: build
build: applet/$(TARGET).hex
eep: applet/$(TARGET).eep
lss: applet/$(TARGET).lss
sym: applet/$(TARGET).sym
# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
COFFCONVERT=$(OBJCOPY) --debugging \
--change-section-address .data-0x800000 \
--change-section-address .bss-0x800000 \
--change-section-address .noinit-0x800000 \
--change-section-address .eeprom-0x810000
coff: applet/$(TARGET).elf
$(COFFCONVERT) -O coff-avr applet/$(TARGET).elf applet/$(TARGET).cof
extcoff: applet/$(TARGET).elf
$(COFFCONVERT) -O coff-ext-avr applet/$(TARGET).elf applet/$(TARGET).cof
.SUFFIXES: .elf .hex .eep .lss .sym .pde
.elf.hex:
$(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@
.elf.eep:
-$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
--change-section-lma .eeprom=0 -O $(FORMAT) $< $@
# Create extended listing file from ELF output file.
.elf.lss:
$(OBJDUMP) -h -S $< > $@
# Create a symbol table from ELF output file.
.elf.sym:
$(NM) -n $< > $@
# Compile: create object files from C++ source files.
.cpp.o: $(HEADERS)
$(CXX) -c $(ALL_CXXFLAGS) $< -o $@
# Compile: create object files from C source files.
.c.o: $(HEADERS)
$(CC) -c $(ALL_CFLAGS) $< -o $@
# Compile: create assembler files from C source files.
.c.s:
$(CC) -S $(ALL_CFLAGS) $< -o $@
# Assemble: create object files from assembler source files.
.S.o:
$(CC) -c $(ALL_ASFLAGS) $< -o $@
applet/$(TARGET).cpp: $(TARGET).pde
test -d applet || mkdir applet
echo '#include "WProgram.h"' > applet/$(TARGET).cpp
echo '#include "avr/interrupt.h"' >> applet/$(TARGET).cpp
sed -n 's|^\(void .*)\).*|\1;|p' $(TARGET).pde | grep -v 'setup()' | \
grep -v 'loop()' >> applet/$(TARGET).cpp
cat $(TARGET).pde >> applet/$(TARGET).cpp
cat $(ARDUINO_SRC)/main.cxx >> applet/$(TARGET).cpp
# Link: create ELF output file from object files.
applet/$(TARGET).elf: applet/$(TARGET).cpp $(OBJ)
$(CC) $(ALL_CFLAGS) $(OBJ) -lm --output $@ $(LDFLAGS)
# $(CC) $(ALL_CFLAGS) $(OBJ) $(ARDUINO_TOOLS)/avr/avr/lib/avr5/crtm168.o --output $@ $(LDFLAGS)
pd_close_serial:
echo 'close;' | /Applications/Pd-extended.app/Contents/Resources/bin/pdsend 34567 || true
# Program the device.
upload: applet/$(TARGET).hex
$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH)
pd_test: build pd_close_serial upload
# Target: clean project.
clean:
$(REMOVE) -- applet/$(TARGET).hex applet/$(TARGET).eep \
applet/$(TARGET).cof applet/$(TARGET).elf $(TARGET).map \
applet/$(TARGET).sym applet/$(TARGET).lss applet/$(TARGET).cpp \
$(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d) $(CXXSRC:.cpp=.s) $(CXXSRC:.cpp=.d)
rmdir -- applet
depend:
if grep '^# DO NOT DELETE' $(MAKEFILE) >/dev/null; \
then \
sed -e '/^# DO NOT DELETE/,$$d' $(MAKEFILE) > \
$(MAKEFILE).$$$$ && \
$(MV) $(MAKEFILE).$$$$ $(MAKEFILE); \
fi
echo '# DO NOT DELETE THIS LINE -- make depend depends on it.' \
>> $(MAKEFILE); \
$(CC) -M -mmcu=$(MCU) $(CDEFS) $(INCLUDE) $(SRC) $(ASRC) >> $(MAKEFILE)
.PHONY: all build eep lss sym coff extcoff clean depend pd_close_serial pd_test
# for emacs
etags:
make etags_`uname -s`
etags *.pde \
$(ARDUINO_SRC)/*.[ch] \
$(ARDUINO_SRC)/*.cpp \
$(ARDUINO_LIB_SRC)/*/*.[ch] \
$(ARDUINO_LIB_SRC)/*/*.cpp \
$(ARDUINO)/hardware/tools/avr/avr/include/avr/*.[ch] \
$(ARDUINO)/hardware/tools/avr/avr/include/*.[ch]
etags_Darwin:
# etags -a
etags_Linux:
# etags -a /usr/include/*.h linux/input.h /usr/include/sys/*.h
etags_MINGW:
# etags -a /usr/include/*.h /usr/include/sys/*.h
path:
echo $(PATH)
echo $$PATH

View File

@@ -0,0 +1,738 @@
/*
* Firmata is a generic protocol for communicating with microcontrollers
* from software on a host computer. It is intended to work with
* any host computer software package.
*
* This version is modified to specifically work with Adafruit's BLE
* library. It no longer works over the standard "USB" connection!
*/
/*
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2010-2011 Paul Stoffregen. All rights reserved.
Copyright (C) 2009 Shigeru Kobayashi. All rights reserved.
Copyright (C) 2009-2011 Jeff Hoefs. All rights reserved.
Copyright (C) 2014 Limor Fried/Kevin Townsend All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
formatted using the GNU C formatting and indenting
*/
/*
* TODO: use Program Control to load stored profiles from EEPROM
*/
#include <Servo.h>
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_BLE_Firmata.h>
#include "Adafruit_BLE_UART.h"
#define AUTO_INPUT_PULLUPS true
// Connect CLK/MISO/MOSI to hardware SPI
// e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11
#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on Uno thats #2 or #3
#define ADAFRUITBLE_RST 9
// so we have digital 3-8 and analog 0-6
Adafruit_BLE_UART BLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ, ADAFRUITBLE_RDY, ADAFRUITBLE_RST);
// make one instance for the user to use
Adafruit_BLE_FirmataClass BLE_Firmata(BLEserial);
/*==============================================================================
* GLOBAL VARIABLES
*============================================================================*/
/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting
int lastAnalogReads[NUM_ANALOG_INPUTS];
/* digital input ports */
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
/* pins configuration */
byte pinConfig[TOTAL_PINS]; // configuration of every pin
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
int pinState[TOTAL_PINS]; // any value that has been written
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
int samplingInterval = 200; // how often to run the main loop (in ms)
#define MINIMUM_SAMPLE_DELAY 150
#define ANALOG_SAMPLE_DELAY 50
/* i2c data */
struct i2c_device_info {
byte addr;
byte reg;
byte bytes;
};
/* for i2c read continuous more */
i2c_device_info query[MAX_QUERIES];
byte i2cRxData[32];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
unsigned int i2cReadDelayTime = 0; // default delay time between i2c read request and Wire.requestFrom()
Servo servos[MAX_SERVOS];
/*==============================================================================
* FUNCTIONS
*============================================================================*/
void readAndReportData(byte address, int theRegister, byte numBytes) {
// allow I2C requests that don't require a register read
// for example, some devices using an interrupt pin to signify new data available
// do not always require the register read so upon interrupt you call Wire.requestFrom()
if (theRegister != REGISTER_NOT_SPECIFIED) {
Wire.beginTransmission(address);
#if ARDUINO >= 100
Wire.write((byte)theRegister);
#else
Wire.send((byte)theRegister);
#endif
Wire.endTransmission();
delayMicroseconds(i2cReadDelayTime); // delay is necessary for some devices such as WiiNunchuck
} else {
theRegister = 0; // fill the register with a dummy value
}
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
// check to be sure correct number of bytes were returned by slave
if(numBytes == Wire.available()) {
i2cRxData[0] = address;
i2cRxData[1] = theRegister;
for (int i = 0; i < numBytes; i++) {
#if ARDUINO >= 100
i2cRxData[2 + i] = Wire.read();
#else
i2cRxData[2 + i] = Wire.receive();
#endif
}
}
else {
if(numBytes > Wire.available()) {
BLE_Firmata.sendString("I2C Read Error: Too many bytes received");
} else {
BLE_Firmata.sendString("I2C Read Error: Too few bytes received");
}
}
// send slave address, register and received bytes
BLE_Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}
void outputPort(byte portNumber, byte portValue, byte forceSend)
{
// pins not configured as INPUT are cleared to zeros
portValue = portValue & portConfigInputs[portNumber];
// only send if the value is different than previously sent
if(forceSend || previousPINs[portNumber] != portValue) {
Serial.print(F("Sending update for port ")); Serial.print(portNumber); Serial.print(" = 0x"); Serial.println(portValue, HEX);
BLE_Firmata.sendDigitalPort(portNumber, portValue);
previousPINs[portNumber] = portValue;
}
}
/* -----------------------------------------------------------------------------
* check all the active digital inputs for change of state, then add any events
* to the Serial output queue using Serial.print() */
void checkDigitalInputs(boolean forceSend = false)
{
/* Using non-looping code allows constants to be given to readPort().
* The compiler will apply substantial optimizations if the inputs
* to readPort() are compile-time constants. */
for (uint8_t i=0; i<TOTAL_PORTS; i++) {
if (reportPINs[i]) {
// Serial.print("Reporting on port "); Serial.print(i); Serial.print(" mask 0x"); Serial.println(portConfigInputs[i], HEX);
uint8_t x = readPort(i, portConfigInputs[i]);
// Serial.print("Read 0x"); Serial.println(x, HEX);
outputPort(i, x, forceSend);
}
}
}
// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
* two bit-arrays that track Digital I/O and PWM status
*/
void setPinModeCallback(byte pin, int mode)
{
if ((pinConfig[pin] == I2C) && (isI2CEnabled) && (mode != I2C)) {
// disable i2c so pins can be used for other functions
// the following if statements should reconfigure the pins properly
disableI2CPins();
}
if (IS_PIN_SERVO(pin) && mode != SERVO && servos[PIN_TO_SERVO(pin)].attached()) {
servos[PIN_TO_SERVO(pin)].detach();
}
if (IS_PIN_ANALOG(pin)) {
reportAnalogCallback(PIN_TO_ANALOG(pin), mode == ANALOG ? 1 : 0); // turn on/off reporting
}
if (IS_PIN_DIGITAL(pin)) {
if (mode == INPUT) {
portConfigInputs[pin/8] |= (1 << (pin & 7));
} else {
portConfigInputs[pin/8] &= ~(1 << (pin & 7));
}
// Serial.print(F("Setting pin #")); Serial.print(pin); Serial.print(F(" port config mask to = 0x"));
// Serial.println(portConfigInputs[pin/8], HEX);
}
pinState[pin] = 0;
switch(mode) {
case ANALOG:
if (IS_PIN_ANALOG(pin)) {
Serial.print(F("Set pin #")); Serial.print(pin); Serial.println(F(" to analog"));
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
}
pinConfig[pin] = ANALOG;
lastAnalogReads[PIN_TO_ANALOG(pin)] = -1;
}
break;
case INPUT:
if (IS_PIN_DIGITAL(pin)) {
Serial.print(F("Set pin #")); Serial.print(pin); Serial.println(F(" to input"));
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
if (AUTO_INPUT_PULLUPS) {
digitalWrite(PIN_TO_DIGITAL(pin), HIGH); // enable internal pull-ups
} else {
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
}
pinConfig[pin] = INPUT;
// force sending state immediately
//delay(10);
//checkDigitalInputs(true);
}
break;
case OUTPUT:
if (IS_PIN_DIGITAL(pin)) {
Serial.print(F("Set pin #")); Serial.print(pin); Serial.println(F(" to output"));
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable PWM
pinMode(PIN_TO_DIGITAL(pin), OUTPUT);
pinConfig[pin] = OUTPUT;
}
break;
case PWM:
if (IS_PIN_PWM(pin)) {
pinMode(PIN_TO_PWM(pin), OUTPUT);
analogWrite(PIN_TO_PWM(pin), 0);
pinConfig[pin] = PWM;
}
break;
case SERVO:
if (IS_PIN_SERVO(pin)) {
pinConfig[pin] = SERVO;
if (!servos[PIN_TO_SERVO(pin)].attached()) {
servos[PIN_TO_SERVO(pin)].attach(PIN_TO_DIGITAL(pin));
}
}
break;
case I2C:
if (IS_PIN_I2C(pin)) {
// mark the pin as i2c
// the user must call I2C_CONFIG to enable I2C for a device
pinConfig[pin] = I2C;
}
break;
default:
Serial.print(F("Unknown pin mode")); // TODO: put error msgs in EEPROM
}
// TODO: save status to EEPROM here, if changed
}
void analogWriteCallback(byte pin, int value)
{
if (pin < TOTAL_PINS) {
switch(pinConfig[pin]) {
case SERVO:
if (IS_PIN_SERVO(pin))
servos[PIN_TO_SERVO(pin)].write(value);
pinState[pin] = value;
break;
case PWM:
if (IS_PIN_PWM(pin))
analogWrite(PIN_TO_PWM(pin), value);
pinState[pin] = value;
break;
}
}
}
void digitalWriteCallback(byte port, int value)
{
byte pin, lastPin, mask=1, pinWriteMask=0;
if (port < TOTAL_PORTS) {
// create a mask of the pins on this port that are writable.
lastPin = port*8+8;
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
for (pin=port*8; pin < lastPin; pin++) {
// do not disturb non-digital pins (eg, Rx & Tx)
if (IS_PIN_DIGITAL(pin)) {
// only write to OUTPUT and INPUT (enables pullup)
// do not touch pins in PWM, ANALOG, SERVO or other modes
if (pinConfig[pin] == OUTPUT || pinConfig[pin] == INPUT) {
pinWriteMask |= mask;
pinState[pin] = ((byte)value & mask) ? 1 : 0;
if (AUTO_INPUT_PULLUPS && ( pinConfig[pin] == INPUT)) {
value |= mask;
}
}
}
mask = mask << 1;
}
Serial.print(F("Write digital port #")); Serial.print(port);
Serial.print(F(" = 0x")); Serial.print(value, HEX);
Serial.print(F(" mask = 0x")); Serial.println(pinWriteMask, HEX);
writePort(port, (byte)value, pinWriteMask);
}
}
// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
*/
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
if (analogPin < TOTAL_ANALOG_PINS) {
if(value == 0) {
analogInputsToReport = analogInputsToReport &~ (1 << analogPin);
Serial.print(F("Stop reporting analog pin #")); Serial.println(analogPin);
} else {
analogInputsToReport |= (1 << analogPin);
Serial.print(F("Will report analog pin #")); Serial.println(analogPin);
}
}
// TODO: save status to EEPROM here, if changed
}
void reportDigitalCallback(byte port, int value)
{
if (port < TOTAL_PORTS) {
Serial.print(F("Will report 0x")); Serial.print(value, HEX); Serial.print(F(" digital mask on port ")); Serial.println(port);
reportPINs[port] = (byte)value;
}
// do not disable analog reporting on these 8 pins, to allow some
// pins used for digital, others analog. Instead, allow both types
// of reporting to be enabled, but check if the pin is configured
// as analog when sampling the analog inputs. Likewise, while
// scanning digital pins, portConfigInputs will mask off values from any
// pins configured as analog
}
/*==============================================================================
* SYSEX-BASED commands
*============================================================================*/
void sysexCallback(byte command, byte argc, byte *argv)
{
byte mode;
byte slaveAddress;
byte slaveRegister;
byte data;
unsigned int delayTime;
switch(command) {
case I2C_REQUEST:
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
//BLE_Firmata.sendString("10-bit addressing mode is not yet supported");
Serial.println(F("10-bit addressing mode is not yet supported"));
return;
}
else {
slaveAddress = argv[0];
}
switch(mode) {
case I2C_WRITE:
Wire.beginTransmission(slaveAddress);
for (byte i = 2; i < argc; i += 2) {
data = argv[i] + (argv[i + 1] << 7);
#if ARDUINO >= 100
Wire.write(data);
#else
Wire.send(data);
#endif
}
Wire.endTransmission();
delayMicroseconds(70);
break;
case I2C_READ:
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
readAndReportData(slaveAddress, (int)slaveRegister, data);
}
else {
// a slave register is NOT specified
data = argv[2] + (argv[3] << 7); // bytes to read
readAndReportData(slaveAddress, (int)REGISTER_NOT_SPECIFIED, data);
}
break;
case I2C_READ_CONTINUOUSLY:
if ((queryIndex + 1) >= MAX_QUERIES) {
// too many queries, just ignore
BLE_Firmata.sendString("too many queries");
break;
}
queryIndex++;
query[queryIndex].addr = slaveAddress;
query[queryIndex].reg = argv[2] + (argv[3] << 7);
query[queryIndex].bytes = argv[4] + (argv[5] << 7);
break;
case I2C_STOP_READING:
byte queryIndexToSkip;
// if read continuous mode is enabled for only 1 i2c device, disable
// read continuous reporting for that device
if (queryIndex <= 0) {
queryIndex = -1;
} else {
// if read continuous mode is enabled for multiple devices,
// determine which device to stop reading and remove it's data from
// the array, shifiting other array data to fill the space
for (byte i = 0; i < queryIndex + 1; i++) {
if (query[i].addr = slaveAddress) {
queryIndexToSkip = i;
break;
}
}
for (byte i = queryIndexToSkip; i<queryIndex + 1; i++) {
if (i < MAX_QUERIES) {
query[i].addr = query[i+1].addr;
query[i].reg = query[i+1].addr;
query[i].bytes = query[i+1].bytes;
}
}
queryIndex--;
}
break;
default:
break;
}
break;
case I2C_CONFIG:
delayTime = (argv[0] + (argv[1] << 7));
if(delayTime > 0) {
i2cReadDelayTime = delayTime;
}
if (!isI2CEnabled) {
enableI2CPins();
}
break;
case SERVO_CONFIG:
if(argc > 4) {
// these vars are here for clarity, they'll optimized away by the compiler
byte pin = argv[0];
int minPulse = argv[1] + (argv[2] << 7);
int maxPulse = argv[3] + (argv[4] << 7);
if (IS_PIN_SERVO(pin)) {
if (servos[PIN_TO_SERVO(pin)].attached())
servos[PIN_TO_SERVO(pin)].detach();
servos[PIN_TO_SERVO(pin)].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse);
setPinModeCallback(pin, SERVO);
}
}
break;
case SAMPLING_INTERVAL:
if (argc > 1) {
samplingInterval = argv[0] + (argv[1] << 7);
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
}
} else {
//BLE_Firmata.sendString("Not enough data");
}
break;
case EXTENDED_ANALOG:
if (argc > 1) {
int val = argv[1];
if (argc > 2) val |= (argv[2] << 7);
if (argc > 3) val |= (argv[3] << 14);
analogWriteCallback(argv[0], val);
}
break;
case CAPABILITY_QUERY:
Serial.write(START_SYSEX);
Serial.write(CAPABILITY_RESPONSE);
for (byte pin=0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_DIGITAL(pin)) {
Serial.write((byte)INPUT);
Serial.write(1);
Serial.write((byte)OUTPUT);
Serial.write(1);
}
if (IS_PIN_ANALOG(pin)) {
Serial.write(ANALOG);
Serial.write(10);
}
if (IS_PIN_PWM(pin)) {
Serial.write(PWM);
Serial.write(8);
}
if (IS_PIN_SERVO(pin)) {
Serial.write(SERVO);
Serial.write(14);
}
if (IS_PIN_I2C(pin)) {
Serial.write(I2C);
Serial.write(1); // to do: determine appropriate value
}
Serial.write(127);
}
Serial.write(END_SYSEX);
break;
case PIN_STATE_QUERY:
if (argc > 0) {
byte pin=argv[0];
Serial.write(START_SYSEX);
Serial.write(PIN_STATE_RESPONSE);
Serial.write(pin);
if (pin < TOTAL_PINS) {
Serial.write((byte)pinConfig[pin]);
Serial.write((byte)pinState[pin] & 0x7F);
if (pinState[pin] & 0xFF80) Serial.write((byte)(pinState[pin] >> 7) & 0x7F);
if (pinState[pin] & 0xC000) Serial.write((byte)(pinState[pin] >> 14) & 0x7F);
}
Serial.write(END_SYSEX);
}
break;
case ANALOG_MAPPING_QUERY:
Serial.write(START_SYSEX);
Serial.write(ANALOG_MAPPING_RESPONSE);
for (byte pin=0; pin < TOTAL_PINS; pin++) {
Serial.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127);
}
Serial.write(END_SYSEX);
break;
}
}
void enableI2CPins()
{
byte i;
// is there a faster way to do this? would probaby require importing
// Arduino.h to get SCL and SDA pins
for (i=0; i < TOTAL_PINS; i++) {
if(IS_PIN_I2C(i)) {
// mark pins as i2c so they are ignore in non i2c data requests
setPinModeCallback(i, I2C);
}
}
isI2CEnabled = true;
// is there enough time before the first I2C request to call this here?
Wire.begin();
}
/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
isI2CEnabled = false;
// disable read continuous mode for all devices
queryIndex = -1;
// uncomment the following if or when the end() method is added to Wire library
// Wire.end();
}
/*==============================================================================
* SETUP()
*============================================================================*/
void systemResetCallback()
{
// initialize a defalt state
Serial.println(F("***RESET***"));
// TODO: option to load config from EEPROM instead of default
if (isI2CEnabled) {
disableI2CPins();
}
for (byte i=0; i < TOTAL_PORTS; i++) {
reportPINs[i] = false; // by default, reporting off
portConfigInputs[i] = 0; // until activated
previousPINs[i] = 0;
}
// pins with analog capability default to analog input
// otherwise, pins default to digital output
for (byte i=0; i < TOTAL_PINS; i++) {
if (IS_PIN_ANALOG(i)) {
// turns off pullup, configures everything
setPinModeCallback(i, ANALOG);
} else {
// sets the output to 0, configures portConfigInputs
setPinModeCallback(i, INPUT);
}
}
// by default, do not report any analog inputs
analogInputsToReport = 0;
/* send digital inputs to set the initial state on the host computer,
* since once in the loop(), this firmware will only send on change */
/*
TODO: this can never execute, since no pins default to digital input
but it will be needed when/if we support EEPROM stored config
for (byte i=0; i < TOTAL_PORTS; i++) {
outputPort(i, readPort(i, portConfigInputs[i]), true);
}
*/
}
aci_evt_opcode_t lastBTLEstatus, BTLEstatus;
void setup()
{
Serial.begin(9600);
Serial.println(F("Adafruit BTLE Firmata test"));
BLEserial.begin();
BTLEstatus = lastBTLEstatus = ACI_EVT_DISCONNECTED;
}
void firmataInit() {
Serial.println(F("Init firmata"));
//BLE_Firmata.setFirmwareVersion(FIRMATA_MAJOR_VERSION, FIRMATA_MINOR_VERSION);
//Serial.println(F("firmata analog"));
BLE_Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
//Serial.println(F("firmata digital"));
BLE_Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
//Serial.println(F("firmata analog report"));
BLE_Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
//Serial.println(F("firmata digital report"));
BLE_Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
//Serial.println(F("firmata pinmode"));
BLE_Firmata.attach(SET_PIN_MODE, setPinModeCallback);
//Serial.println(F("firmata sysex"));
BLE_Firmata.attach(START_SYSEX, sysexCallback);
//Serial.println(F("firmata reset"));
BLE_Firmata.attach(SYSTEM_RESET, systemResetCallback);
Serial.println(F("Begin firmata"));
BLE_Firmata.begin();
systemResetCallback(); // reset to default config
}
/*==============================================================================
* LOOP()
*============================================================================*/
void loop()
{
// Check the BTLE link, how're we doing?
BLEserial.pollACI();
// Link status check
BTLEstatus = BLEserial.getState();
// Check if something has changed
if (BTLEstatus != lastBTLEstatus) {
// print it out!
if (BTLEstatus == ACI_EVT_DEVICE_STARTED) {
Serial.println(F("* Advertising started"));
}
if (BTLEstatus == ACI_EVT_CONNECTED) {
Serial.println(F("* Connected!"));
// initialize Firmata cleanly
firmataInit();
}
if (BTLEstatus == ACI_EVT_DISCONNECTED) {
Serial.println(F("* Disconnected or advertising timed out"));
}
// OK set the last status change to this one
lastBTLEstatus = BTLEstatus;
}
// if not connected... bail
if (BTLEstatus != ACI_EVT_CONNECTED) {
delay(100);
return;
}
// For debugging, see if there's data on the serial console, we would forwad it to BTLE
if (Serial.available()) {
BLEserial.write(Serial.read());
}
// Onto the Firmata main loop
byte pin, analogPin;
/* DIGITALREAD - as fast as possible, check for changes and output them to the
* BTLE buffer using Serial.print() */
checkDigitalInputs();
/* SERIALREAD - processing incoming messagse as soon as possible, while still
* checking digital inputs. */
while(BLE_Firmata.available()) {
//Serial.println(F("*data available*"));
BLE_Firmata.processInput();
}
/* SEND FTDI WRITE BUFFER - make sure that the FTDI buffer doesn't go over
* 60 bytes. use a timer to sending an event character every 4 ms to
* trigger the buffer to dump. */
// make the sampling interval longer if we have more analog inputs!
uint8_t analogreportnums = 0;
for(uint8_t a=0; a<8; a++) {
if (analogInputsToReport & (1 << a)) {
analogreportnums++;
}
}
samplingInterval = (uint16_t)MINIMUM_SAMPLE_DELAY + (uint16_t)ANALOG_SAMPLE_DELAY * (1+analogreportnums);
currentMillis = millis();
if (currentMillis - previousMillis > samplingInterval) {
previousMillis += samplingInterval;
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
for(pin=0; pin<TOTAL_PINS; pin++) {
if (IS_PIN_ANALOG(pin) && (pinConfig[pin] == ANALOG)) {
analogPin = PIN_TO_ANALOG(pin);
if (analogInputsToReport & (1 << analogPin)) {
int currentRead = analogRead(analogPin);
if ((lastAnalogReads[analogPin] == -1) || (lastAnalogReads[analogPin] != currentRead)) {
Serial.print(F("Analog")); Serial.print(analogPin); Serial.print(F(" = ")); Serial.println(currentRead);
BLE_Firmata.sendAnalog(analogPin, currentRead);
lastAnalogReads[analogPin] = currentRead;
}
}
}
}
// report i2c data for all device with read continuous mode enabled
if (queryIndex > -1) {
for (byte i = 0; i < queryIndex + 1; i++) {
readAndReportData(query[i].addr, query[i].reg, query[i].bytes);
}
}
}
}

View File

@@ -0,0 +1,62 @@
#######################################
# Syntax Coloring Map For Firmata
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
Firmata KEYWORD1
callbackFunction KEYWORD1
systemResetCallbackFunction KEYWORD1
stringCallbackFunction KEYWORD1
sysexCallbackFunction KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
begin KEYWORD2
begin KEYWORD2
printVersion KEYWORD2
blinkVersion KEYWORD2
printFirmwareVersion KEYWORD2
setFirmwareVersion KEYWORD2
setFirmwareNameAndVersion KEYWORD2
available KEYWORD2
processInput KEYWORD2
sendAnalog KEYWORD2
sendDigital KEYWORD2
sendDigitalPortPair KEYWORD2
sendDigitalPort KEYWORD2
sendString KEYWORD2
sendString KEYWORD2
sendSysex KEYWORD2
attach KEYWORD2
detach KEYWORD2
flush KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
MAX_DATA_BYTES LITERAL1
DIGITAL_MESSAGE LITERAL1
ANALOG_MESSAGE LITERAL1
REPORT_ANALOG LITERAL1
REPORT_DIGITAL LITERAL1
REPORT_VERSION LITERAL1
SET_PIN_MODE LITERAL1
SYSTEM_RESET LITERAL1
START_SYSEX LITERAL1
END_SYSEX LITERAL1
PWM LITERAL1
TOTAL_ANALOG_PINS LITERAL1
TOTAL_DIGITAL_PINS LITERAL1
TOTAL_PORTS LITERAL1
ANALOG_PORT LITERAL1

View File

@@ -0,0 +1,9 @@
name=Adafruit BLEFirmata
version=1.1.0
author=Adafruit
maintainer=Adafruit <info@adafruit.com>
sentence=Modified Firmata code to work with Adafruit's nRF8001 Breakout
paragraph=Modified Firmata code to work with Adafruit's nRF8001 Breakout
category=Communication
url=https://github.com/adafruit/Adafruit_BLEFirmata
architectures=*