initial commit
This commit is contained in:
@@ -0,0 +1,56 @@
|
||||
// COMMON SETTINGS
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
// These settings are used in both SW UART, HW UART and SPI mode
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
#define BUFSIZE 128 // Size of the read buffer for incoming data
|
||||
#define VERBOSE_MODE true // If set to 'true' enables debug output
|
||||
|
||||
|
||||
// SOFTWARE UART SETTINGS
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
// The following macros declare the pins that will be used for 'SW' serial.
|
||||
// You should use this option if you are connecting the UART Friend to an UNO
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
#define BLUEFRUIT_SWUART_RXD_PIN 9 // Required for software serial!
|
||||
#define BLUEFRUIT_SWUART_TXD_PIN 10 // Required for software serial!
|
||||
#define BLUEFRUIT_UART_CTS_PIN 11 // Required for software serial!
|
||||
#define BLUEFRUIT_UART_RTS_PIN -1 // Optional, set to -1 if unused
|
||||
|
||||
|
||||
// HARDWARE UART SETTINGS
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
// The following macros declare the HW serial port you are using. Uncomment
|
||||
// this line if you are connecting the BLE to Leonardo/Micro or Flora
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
#ifdef Serial1 // this makes it not complain on compilation if there's no Serial1
|
||||
#define BLUEFRUIT_HWSERIAL_NAME Serial1
|
||||
#endif
|
||||
|
||||
|
||||
// SHARED UART SETTINGS
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
// The following sets the optional Mode pin, its recommended but not required
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
#define BLUEFRUIT_UART_MODE_PIN 12 // Set to -1 if unused
|
||||
|
||||
|
||||
// SHARED SPI SETTINGS
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
// The following macros declare the pins to use for HW and SW SPI communication.
|
||||
// SCK, MISO and MOSI should be connected to the HW SPI pins on the Uno when
|
||||
// using HW SPI. This should be used with nRF51822 based Bluefruit LE modules
|
||||
// that use SPI (Bluefruit LE SPI Friend).
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
#define BLUEFRUIT_SPI_CS 8
|
||||
#define BLUEFRUIT_SPI_IRQ 7
|
||||
#define BLUEFRUIT_SPI_RST 4
|
||||
|
||||
// SOFTWARE SPI SETTINGS
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
// The following macros declare the pins to use for SW SPI communication.
|
||||
// This should be used with nRF51822 based Bluefruit LE modules that use SPI
|
||||
// (Bluefruit LE SPI Friend).
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
#define BLUEFRUIT_SPI_SCK 13
|
||||
#define BLUEFRUIT_SPI_MISO 12
|
||||
#define BLUEFRUIT_SPI_MOSI 11
|
||||
@@ -0,0 +1,859 @@
|
||||
#include <Servo.h>
|
||||
#include <Wire.h>
|
||||
#include <SPI.h>
|
||||
#include <Adafruit_BLE_Firmata.h>
|
||||
#if not defined (_VARIANT_ARDUINO_DUE_X_) && not defined (_VARIANT_ARDUINO_ZERO_)
|
||||
#include <SoftwareSerial.h>
|
||||
#endif
|
||||
|
||||
// Change this to whatever is the Serial console you want, either Serial or SerialUSB
|
||||
#define FIRMATADEBUG Serial
|
||||
// Pause for Serial console before beginning?
|
||||
#define WAITFORSERIAL true
|
||||
// Print all BLE interactions?
|
||||
#define VERBOSE_MODE false
|
||||
|
||||
|
||||
/************************ CONFIGURATION SECTION ***********************************/
|
||||
/*
|
||||
Don't forget to also change the BluefruitConfig.h for the SPI or UART connection
|
||||
and pinout you are using!
|
||||
|
||||
Then below, you can edit the list of pins that are available. Remove any pins
|
||||
that are used for accessories or for talking to the BLE module!
|
||||
*/
|
||||
|
||||
/************** For Bluefruit Micro or Feather 32u4 Bluefruit ************/
|
||||
uint8_t boards_digitaliopins[] = {0,1,2,3,5,6,9,10,11,12,13,A0,A1,A2,A3,A4,A5};
|
||||
|
||||
/************** For UNO + nRF58122 SPI & shield ************/
|
||||
//uint8_t boards_digitaliopins[] = {2, 3, 5, 6, 9, 10, A0, A1, A2, A3, A4, A5};
|
||||
|
||||
/************** For Bluefruit M0 Bluefruit ************/
|
||||
//uint8_t boards_digitaliopins[] = {0,1,5,6,9,10,11,12,13,20,21,A0,A1,A2,A3,A4,A5};
|
||||
|
||||
#if defined(__AVR_ATmega328P__)
|
||||
// Standard setup for UNO, no need to tweak
|
||||
uint8_t boards_analogiopins[] = {A0, A1, A2, A3, A4, A5}; // A0 == digital 14, etc
|
||||
uint8_t boards_pwmpins[] = {3, 5, 6, 9, 10, 11};
|
||||
uint8_t boards_servopins[] = {9, 10};
|
||||
uint8_t boards_i2cpins[] = {SDA, SCL};
|
||||
#elif defined(__AVR_ATmega32U4__)
|
||||
uint8_t boards_analogiopins[] = {A0, A1, A2, A3, A4, A5}; // A0 == digital 14, etc
|
||||
uint8_t boards_pwmpins[] = {3, 5, 6, 9, 10, 11, 13};
|
||||
uint8_t boards_servopins[] = {9, 10};
|
||||
uint8_t boards_i2cpins[] = {SDA, SCL};
|
||||
#elif defined(__SAMD21G18A__)
|
||||
#define SDA PIN_WIRE_SDA
|
||||
#define SCL PIN_WIRE_SCL
|
||||
uint8_t boards_analogiopins[] = {PIN_A0, PIN_A1, PIN_A2, PIN_A3, PIN_A4, PIN_A5,PIN_A6, PIN_A7}; // A0 == digital 14, etc
|
||||
uint8_t boards_pwmpins[] = {3,4,5,6,8,10,11,12,A0,A1,A2,A3,A4,A5};
|
||||
uint8_t boards_servopins[] = {9, 10};
|
||||
uint8_t boards_i2cpins[] = {SDA, SCL};
|
||||
#define NUM_DIGITAL_PINS 26
|
||||
#endif
|
||||
|
||||
|
||||
#define TOTAL_PINS NUM_DIGITAL_PINS /* highest number in boards_digitaliopins MEMEFIXME:automate */
|
||||
#define TOTAL_PORTS ((TOTAL_PINS + 7) / 8)
|
||||
|
||||
|
||||
/***********************************************************/
|
||||
|
||||
|
||||
#include "Adafruit_BLE_Firmata_Boards.h"
|
||||
|
||||
#include "Adafruit_BLE.h"
|
||||
#include "Adafruit_BluefruitLE_SPI.h"
|
||||
#include "Adafruit_BluefruitLE_UART.h"
|
||||
#include "BluefruitConfig.h"
|
||||
|
||||
|
||||
// Create the bluefruit object, either software serial...uncomment these lines
|
||||
/*
|
||||
SoftwareSerial bluefruitSS = SoftwareSerial(BLUEFRUIT_SWUART_TXD_PIN, BLUEFRUIT_SWUART_RXD_PIN);
|
||||
|
||||
Adafruit_BluefruitLE_UART bluefruit(bluefruitSS, BLUEFRUIT_UART_MODE_PIN,
|
||||
BLUEFRUIT_UART_CTS_PIN, BLUEFRUIT_UART_RTS_PIN);
|
||||
*/
|
||||
|
||||
/* ...or hardware serial, which does not need the RTS/CTS pins. Uncomment this line */
|
||||
// Adafruit_BluefruitLE_UART bluefruit(BLUEFRUIT_HWSERIAL_NAME, BLUEFRUIT_UART_MODE_PIN);
|
||||
|
||||
/* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user selected CS/IRQ/RST */
|
||||
Adafruit_BluefruitLE_SPI bluefruit(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);
|
||||
|
||||
/* ...software SPI, using SCK/MOSI/MISO user-defined SPI pins and then user selected CS/IRQ/RST */
|
||||
//Adafruit_BluefruitLE_SPI bluefruit(BLUEFRUIT_SPI_SCK, BLUEFRUIT_SPI_MISO,
|
||||
// BLUEFRUIT_SPI_MOSI, BLUEFRUIT_SPI_CS,
|
||||
// BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);
|
||||
|
||||
|
||||
#define AUTO_INPUT_PULLUPS true
|
||||
|
||||
// our current connection status
|
||||
boolean lastBTLEstatus, BTLEstatus;
|
||||
|
||||
// make one instance for the user to use
|
||||
Adafruit_BLE_FirmataClass BLE_Firmata = Adafruit_BLE_FirmataClass(bluefruit);
|
||||
|
||||
// A small helper
|
||||
void error(const __FlashStringHelper*err) {
|
||||
FIRMATADEBUG.println(err);
|
||||
while (1);
|
||||
}
|
||||
|
||||
/*==============================================================================
|
||||
* GLOBAL VARIABLES
|
||||
*============================================================================*/
|
||||
|
||||
/* analog inputs */
|
||||
int analogInputsToReport = 0; // bitwise array to store pin reporting
|
||||
int lastAnalogReads[NUM_ANALOG_INPUTS];
|
||||
|
||||
/* digital input ports */
|
||||
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
|
||||
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
|
||||
|
||||
/* pins configuration */
|
||||
byte pinConfig[TOTAL_PINS]; // configuration of every pin
|
||||
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
|
||||
int pinState[TOTAL_PINS]; // any value that has been written
|
||||
|
||||
/* timer variables */
|
||||
unsigned long currentMillis; // store the current value from millis()
|
||||
unsigned long previousMillis; // for comparison with currentMillis
|
||||
int samplingInterval = 200; // how often to run the main loop (in ms)
|
||||
#define MINIMUM_SAMPLE_DELAY 150
|
||||
#define ANALOG_SAMPLE_DELAY 50
|
||||
|
||||
|
||||
/* i2c data */
|
||||
struct i2c_device_info {
|
||||
byte addr;
|
||||
byte reg;
|
||||
byte bytes;
|
||||
};
|
||||
|
||||
/* for i2c read continuous more */
|
||||
i2c_device_info query[MAX_QUERIES];
|
||||
|
||||
byte i2cRxData[32];
|
||||
boolean isI2CEnabled = false;
|
||||
signed char queryIndex = -1;
|
||||
unsigned int i2cReadDelayTime = 0; // default delay time between i2c read request and Wire.requestFrom()
|
||||
|
||||
Servo servos[MAX_SERVOS];
|
||||
/*==============================================================================
|
||||
* FUNCTIONS
|
||||
*============================================================================*/
|
||||
|
||||
void readAndReportData(byte address, int theRegister, byte numBytes) {
|
||||
// allow I2C requests that don't require a register read
|
||||
// for example, some devices using an interrupt pin to signify new data available
|
||||
// do not always require the register read so upon interrupt you call Wire.requestFrom()
|
||||
if (theRegister != REGISTER_NOT_SPECIFIED) {
|
||||
Wire.beginTransmission(address);
|
||||
#if ARDUINO >= 100
|
||||
Wire.write((byte)theRegister);
|
||||
#else
|
||||
Wire.send((byte)theRegister);
|
||||
#endif
|
||||
Wire.endTransmission();
|
||||
delayMicroseconds(i2cReadDelayTime); // delay is necessary for some devices such as WiiNunchuck
|
||||
} else {
|
||||
theRegister = 0; // fill the register with a dummy value
|
||||
}
|
||||
|
||||
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
|
||||
|
||||
// check to be sure correct number of bytes were returned by slave
|
||||
if(numBytes == Wire.available()) {
|
||||
i2cRxData[0] = address;
|
||||
i2cRxData[1] = theRegister;
|
||||
for (int i = 0; i < numBytes; i++) {
|
||||
#if ARDUINO >= 100
|
||||
i2cRxData[2 + i] = Wire.read();
|
||||
#else
|
||||
i2cRxData[2 + i] = Wire.receive();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else {
|
||||
if(numBytes > Wire.available()) {
|
||||
BLE_Firmata.sendString("I2C Read Error: Too many bytes received");
|
||||
} else {
|
||||
BLE_Firmata.sendString("I2C Read Error: Too few bytes received");
|
||||
}
|
||||
}
|
||||
|
||||
// send slave address, register and received bytes
|
||||
BLE_Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
|
||||
}
|
||||
|
||||
void outputPort(byte portNumber, byte portValue, byte forceSend)
|
||||
{
|
||||
// pins not configured as INPUT are cleared to zeros
|
||||
portValue = portValue & portConfigInputs[portNumber];
|
||||
// only send if the value is different than previously sent
|
||||
if(forceSend || previousPINs[portNumber] != portValue) {
|
||||
//FIRMATADEBUG.print(F("Sending update for port ")); FIRMATADEBUG.print(portNumber); FIRMATADEBUG.print(" = 0x"); FIRMATADEBUG.println(portValue, HEX);
|
||||
BLE_Firmata.sendDigitalPort(portNumber, portValue);
|
||||
previousPINs[portNumber] = portValue;
|
||||
}
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------------------------
|
||||
* check all the active digital inputs for change of state, then add any events
|
||||
* to the Serial output queue using () */
|
||||
void checkDigitalInputs(boolean forceSend = false)
|
||||
{
|
||||
/* Using non-looping code allows constants to be given to readPort().
|
||||
* The compiler will apply substantial optimizations if the inputs
|
||||
* to readPort() are compile-time constants. */
|
||||
for (uint8_t i=0; i<TOTAL_PORTS; i++) {
|
||||
if (reportPINs[i]) {
|
||||
// FIRMATADEBUG.print("Reporting on port "); FIRMATADEBUG.print(i); FIRMATADEBUG.print(" mask 0x"); FIRMATADEBUG.println(portConfigInputs[i], HEX);
|
||||
uint8_t x = BLE_Firmata.readPort(i, portConfigInputs[i]);
|
||||
// FIRMATADEBUG.print("Read 0x"); FIRMATADEBUG.println(x, HEX);
|
||||
outputPort(i, x, forceSend);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/* sets the pin mode to the correct state and sets the relevant bits in the
|
||||
* two bit-arrays that track Digital I/O and PWM status
|
||||
*/
|
||||
void setPinModeCallback(byte pin, int mode)
|
||||
{
|
||||
//FIRMATADEBUG.print("Setting pin #"); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(" to "); FIRMATADEBUG.println(mode);
|
||||
if ((pinConfig[pin] == I2C) && (isI2CEnabled) && (mode != I2C)) {
|
||||
// disable i2c so pins can be used for other functions
|
||||
// the following if statements should reconfigure the pins properly
|
||||
disableI2CPins();
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin) && mode != SERVO && servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached()) {
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].detach();
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
|
||||
reportAnalogCallback(BLE_Firmata.PIN_TO_ANALOG(pin), mode == ANALOG ? 1 : 0); // turn on/off reporting
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
if (mode == INPUT) {
|
||||
portConfigInputs[pin/8] |= (1 << (pin & 7));
|
||||
} else {
|
||||
portConfigInputs[pin/8] &= ~(1 << (pin & 7));
|
||||
}
|
||||
// FIRMATADEBUG.print(F("Setting pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(F(" port config mask to = 0x"));
|
||||
// FIRMATADEBUG.println(portConfigInputs[pin/8], HEX);
|
||||
}
|
||||
pinState[pin] = 0;
|
||||
switch(mode) {
|
||||
case ANALOG:
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
|
||||
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to analog"));
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT); // disable output driver
|
||||
}
|
||||
pinConfig[pin] = ANALOG;
|
||||
lastAnalogReads[BLE_Firmata.PIN_TO_ANALOG(pin)] = -1;
|
||||
}
|
||||
break;
|
||||
case INPUT:
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to input"));
|
||||
|
||||
if (AUTO_INPUT_PULLUPS) {
|
||||
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT_PULLUP); // disable output driver
|
||||
} else {
|
||||
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT); // disable output driver
|
||||
}
|
||||
pinConfig[pin] = INPUT;
|
||||
|
||||
// force sending state immediately
|
||||
//delay(10);
|
||||
//checkDigitalInputs(true);
|
||||
}
|
||||
break;
|
||||
case OUTPUT:
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to output"));
|
||||
digitalWrite(BLE_Firmata.PIN_TO_DIGITAL(pin), LOW); // disable PWM
|
||||
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), OUTPUT);
|
||||
pinConfig[pin] = OUTPUT;
|
||||
}
|
||||
break;
|
||||
case PWM:
|
||||
if (BLE_Firmata.IS_PIN_PWM(pin)) {
|
||||
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to PWM"));
|
||||
pinMode(BLE_Firmata.PIN_TO_PWM(pin), OUTPUT);
|
||||
analogWrite(BLE_Firmata.PIN_TO_PWM(pin), 0);
|
||||
pinConfig[pin] = PWM;
|
||||
}
|
||||
break;
|
||||
case SERVO:
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
|
||||
pinConfig[pin] = SERVO;
|
||||
if (!servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached()) {
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].attach(BLE_Firmata.PIN_TO_DIGITAL(pin));
|
||||
}
|
||||
}
|
||||
break;
|
||||
case I2C:
|
||||
if (BLE_Firmata.IS_PIN_I2C(pin)) {
|
||||
// mark the pin as i2c
|
||||
// the user must call I2C_CONFIG to enable I2C for a device
|
||||
pinConfig[pin] = I2C;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
FIRMATADEBUG.print(F("Unknown pin mode")); // TODO: put error msgs in EEPROM
|
||||
}
|
||||
// TODO: save status to EEPROM here, if changed
|
||||
}
|
||||
|
||||
void analogWriteCallback(byte pin, int value)
|
||||
{
|
||||
if (pin < TOTAL_PINS) {
|
||||
switch(pinConfig[pin]) {
|
||||
case SERVO:
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin))
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].write(value);
|
||||
pinState[pin] = value;
|
||||
break;
|
||||
case PWM:
|
||||
if (BLE_Firmata.IS_PIN_PWM(pin))
|
||||
analogWrite(BLE_Firmata.PIN_TO_PWM(pin), value);
|
||||
FIRMATADEBUG.print("pwm("); FIRMATADEBUG.print(BLE_Firmata.PIN_TO_PWM(pin)); FIRMATADEBUG.print(","); FIRMATADEBUG.print(value); FIRMATADEBUG.println(")");
|
||||
pinState[pin] = value;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void digitalWriteCallback(byte port, int value)
|
||||
{
|
||||
//FIRMATADEBUG.print("DWCx"); FIRMATADEBUG.print(port, HEX); FIRMATADEBUG.print(" "); FIRMATADEBUG.println(value);
|
||||
byte pin, lastPin, mask=1, pinWriteMask=0;
|
||||
|
||||
if (port < TOTAL_PORTS) {
|
||||
// create a mask of the pins on this port that are writable.
|
||||
lastPin = port*8+8;
|
||||
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
|
||||
for (pin=port*8; pin < lastPin; pin++) {
|
||||
// do not disturb non-digital pins (eg, Rx & Tx)
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
// only write to OUTPUT
|
||||
// do not touch pins in PWM, ANALOG, SERVO or other modes
|
||||
if (pinConfig[pin] == OUTPUT) {
|
||||
pinWriteMask |= mask;
|
||||
pinState[pin] = ((byte)value & mask) ? 1 : 0;
|
||||
}
|
||||
}
|
||||
mask = mask << 1;
|
||||
}
|
||||
FIRMATADEBUG.print(F("Write digital port #")); FIRMATADEBUG.print(port);
|
||||
FIRMATADEBUG.print(F(" = 0x")); FIRMATADEBUG.print(value, HEX);
|
||||
FIRMATADEBUG.print(F(" mask = 0x")); FIRMATADEBUG.println(pinWriteMask, HEX);
|
||||
BLE_Firmata.writePort(port, (byte)value, pinWriteMask);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
|
||||
*/
|
||||
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
|
||||
//}
|
||||
void reportAnalogCallback(byte analogPin, int value)
|
||||
{
|
||||
if (analogPin < BLE_Firmata._num_analogiopins) {
|
||||
if(value == 0) {
|
||||
analogInputsToReport = analogInputsToReport &~ (1 << analogPin);
|
||||
FIRMATADEBUG.print(F("Stop reporting analog pin #")); FIRMATADEBUG.println(analogPin);
|
||||
} else {
|
||||
analogInputsToReport |= (1 << analogPin);
|
||||
FIRMATADEBUG.print(F("Will report analog pin #")); FIRMATADEBUG.println(analogPin);
|
||||
}
|
||||
}
|
||||
// TODO: save status to EEPROM here, if changed
|
||||
}
|
||||
|
||||
void reportDigitalCallback(byte port, int value)
|
||||
{
|
||||
if (port < TOTAL_PORTS) {
|
||||
//FIRMATADEBUG.print(F("Will report 0x")); FIRMATADEBUG.print(value, HEX); FIRMATADEBUG.print(F(" digital mask on port ")); FIRMATADEBUG.println(port);
|
||||
reportPINs[port] = (byte)value;
|
||||
}
|
||||
// do not disable analog reporting on these 8 pins, to allow some
|
||||
// pins used for digital, others analog. Instead, allow both types
|
||||
// of reporting to be enabled, but check if the pin is configured
|
||||
// as analog when sampling the analog inputs. Likewise, while
|
||||
// scanning digital pins, portConfigInputs will mask off values from any
|
||||
// pins configured as analog
|
||||
}
|
||||
|
||||
/*==============================================================================
|
||||
* SYSEX-BASED commands
|
||||
*============================================================================*/
|
||||
|
||||
void sysexCallback(byte command, byte argc, byte *argv)
|
||||
{
|
||||
byte mode;
|
||||
byte slaveAddress;
|
||||
byte slaveRegister;
|
||||
byte data;
|
||||
unsigned int delayTime;
|
||||
|
||||
FIRMATADEBUG.println("********** Sysex callback");
|
||||
switch(command) {
|
||||
case I2C_REQUEST:
|
||||
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
|
||||
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
|
||||
//BLE_Firmata.sendString("10-bit addressing mode is not yet supported");
|
||||
FIRMATADEBUG.println(F("10-bit addressing mode is not yet supported"));
|
||||
return;
|
||||
}
|
||||
else {
|
||||
slaveAddress = argv[0];
|
||||
}
|
||||
|
||||
switch(mode) {
|
||||
case I2C_WRITE:
|
||||
Wire.beginTransmission(slaveAddress);
|
||||
for (byte i = 2; i < argc; i += 2) {
|
||||
data = argv[i] + (argv[i + 1] << 7);
|
||||
#if ARDUINO >= 100
|
||||
Wire.write(data);
|
||||
#else
|
||||
Wire.send(data);
|
||||
#endif
|
||||
}
|
||||
Wire.endTransmission();
|
||||
delayMicroseconds(70);
|
||||
break;
|
||||
case I2C_READ:
|
||||
if (argc == 6) {
|
||||
// a slave register is specified
|
||||
slaveRegister = argv[2] + (argv[3] << 7);
|
||||
data = argv[4] + (argv[5] << 7); // bytes to read
|
||||
readAndReportData(slaveAddress, (int)slaveRegister, data);
|
||||
}
|
||||
else {
|
||||
// a slave register is NOT specified
|
||||
data = argv[2] + (argv[3] << 7); // bytes to read
|
||||
readAndReportData(slaveAddress, (int)REGISTER_NOT_SPECIFIED, data);
|
||||
}
|
||||
break;
|
||||
case I2C_READ_CONTINUOUSLY:
|
||||
if ((queryIndex + 1) >= MAX_QUERIES) {
|
||||
// too many queries, just ignore
|
||||
BLE_Firmata.sendString("too many queries");
|
||||
break;
|
||||
}
|
||||
queryIndex++;
|
||||
query[queryIndex].addr = slaveAddress;
|
||||
query[queryIndex].reg = argv[2] + (argv[3] << 7);
|
||||
query[queryIndex].bytes = argv[4] + (argv[5] << 7);
|
||||
break;
|
||||
case I2C_STOP_READING:
|
||||
byte queryIndexToSkip;
|
||||
// if read continuous mode is enabled for only 1 i2c device, disable
|
||||
// read continuous reporting for that device
|
||||
if (queryIndex <= 0) {
|
||||
queryIndex = -1;
|
||||
} else {
|
||||
// if read continuous mode is enabled for multiple devices,
|
||||
// determine which device to stop reading and remove it's data from
|
||||
// the array, shifiting other array data to fill the space
|
||||
for (byte i = 0; i < queryIndex + 1; i++) {
|
||||
if (query[i].addr = slaveAddress) {
|
||||
queryIndexToSkip = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (byte i = queryIndexToSkip; i<queryIndex + 1; i++) {
|
||||
if (i < MAX_QUERIES) {
|
||||
query[i].addr = query[i+1].addr;
|
||||
query[i].reg = query[i+1].addr;
|
||||
query[i].bytes = query[i+1].bytes;
|
||||
}
|
||||
}
|
||||
queryIndex--;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case I2C_CONFIG:
|
||||
delayTime = (argv[0] + (argv[1] << 7));
|
||||
|
||||
if(delayTime > 0) {
|
||||
i2cReadDelayTime = delayTime;
|
||||
}
|
||||
|
||||
if (!isI2CEnabled) {
|
||||
enableI2CPins();
|
||||
}
|
||||
|
||||
break;
|
||||
case SERVO_CONFIG:
|
||||
if(argc > 4) {
|
||||
// these vars are here for clarity, they'll optimized away by the compiler
|
||||
byte pin = argv[0];
|
||||
int minPulse = argv[1] + (argv[2] << 7);
|
||||
int maxPulse = argv[3] + (argv[4] << 7);
|
||||
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
|
||||
if (servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached())
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].detach();
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].attach(BLE_Firmata.PIN_TO_DIGITAL(pin), minPulse, maxPulse);
|
||||
setPinModeCallback(pin, SERVO);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case SAMPLING_INTERVAL:
|
||||
if (argc > 1) {
|
||||
samplingInterval = argv[0] + (argv[1] << 7);
|
||||
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
|
||||
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
|
||||
}
|
||||
} else {
|
||||
//BLE_Firmata.sendString("Not enough data");
|
||||
}
|
||||
break;
|
||||
case EXTENDED_ANALOG:
|
||||
if (argc > 1) {
|
||||
int val = argv[1];
|
||||
if (argc > 2) val |= (argv[2] << 7);
|
||||
if (argc > 3) val |= (argv[3] << 14);
|
||||
analogWriteCallback(argv[0], val);
|
||||
}
|
||||
break;
|
||||
case CAPABILITY_QUERY:
|
||||
bluefruit.write(START_SYSEX);
|
||||
bluefruit.write(CAPABILITY_RESPONSE);
|
||||
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(START_SYSEX, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(CAPABILITY_RESPONSE, HEX);
|
||||
delay(10);
|
||||
for (byte pin=0; pin < TOTAL_PINS; pin++) {
|
||||
//FIRMATADEBUG.print("\t#"); FIRMATADEBUG.println(pin);
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
bluefruit.write((byte)INPUT);
|
||||
bluefruit.write(1);
|
||||
bluefruit.write((byte)OUTPUT);
|
||||
bluefruit.write(1);
|
||||
|
||||
/*
|
||||
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(INPUT, HEX);
|
||||
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(1, HEX);
|
||||
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(OUTPUT, HEX);
|
||||
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(1, HEX);
|
||||
*/
|
||||
delay(20);
|
||||
} else {
|
||||
bluefruit.write(127);
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(127, HEX);
|
||||
delay(20);
|
||||
continue;
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
|
||||
bluefruit.write(ANALOG);
|
||||
bluefruit.write(10);
|
||||
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(ANALOG, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(10, HEX);
|
||||
delay(20);
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_PWM(pin)) {
|
||||
bluefruit.write(PWM);
|
||||
bluefruit.write(8);
|
||||
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(PWM, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(8, HEX);
|
||||
delay(20);
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
|
||||
bluefruit.write(SERVO);
|
||||
bluefruit.write(14);
|
||||
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(SERVO, HEX);FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(14, HEX);
|
||||
delay(20);
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_I2C(pin)) {
|
||||
bluefruit.write(I2C);
|
||||
bluefruit.write(1); // to do: determine appropriate value
|
||||
delay(20);
|
||||
}
|
||||
bluefruit.write(127);
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(127, HEX);
|
||||
}
|
||||
bluefruit.write(END_SYSEX);
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(END_SYSEX, HEX);
|
||||
break;
|
||||
case PIN_STATE_QUERY:
|
||||
if (argc > 0) {
|
||||
byte pin=argv[0];
|
||||
bluefruit.write(START_SYSEX);
|
||||
bluefruit.write(PIN_STATE_RESPONSE);
|
||||
bluefruit.write(pin);
|
||||
if (pin < TOTAL_PINS) {
|
||||
bluefruit.write((byte)pinConfig[pin]);
|
||||
bluefruit.write((byte)pinState[pin] & 0x7F);
|
||||
if (pinState[pin] & 0xFF80) bluefruit.write((byte)(pinState[pin] >> 7) & 0x7F);
|
||||
if (pinState[pin] & 0xC000) bluefruit.write((byte)(pinState[pin] >> 14) & 0x7F);
|
||||
}
|
||||
bluefruit.write(END_SYSEX);
|
||||
}
|
||||
break;
|
||||
case ANALOG_MAPPING_QUERY:
|
||||
FIRMATADEBUG.println("Analog mapping query");
|
||||
bluefruit.write(START_SYSEX);
|
||||
bluefruit.write(ANALOG_MAPPING_RESPONSE);
|
||||
for (byte pin=0; pin < TOTAL_PINS; pin++) {
|
||||
bluefruit.write(BLE_Firmata.IS_PIN_ANALOG(pin) ? BLE_Firmata.PIN_TO_ANALOG(pin) : 127);
|
||||
}
|
||||
bluefruit.write(END_SYSEX);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void enableI2CPins()
|
||||
{
|
||||
byte i;
|
||||
// is there a faster way to do this? would probaby require importing
|
||||
// Arduino.h to get SCL and SDA pins
|
||||
for (i=0; i < TOTAL_PINS; i++) {
|
||||
if(BLE_Firmata.IS_PIN_I2C(i)) {
|
||||
// mark pins as i2c so they are ignore in non i2c data requests
|
||||
setPinModeCallback(i, I2C);
|
||||
}
|
||||
}
|
||||
|
||||
isI2CEnabled = true;
|
||||
|
||||
// is there enough time before the first I2C request to call this here?
|
||||
Wire.begin();
|
||||
}
|
||||
|
||||
/* disable the i2c pins so they can be used for other functions */
|
||||
void disableI2CPins() {
|
||||
isI2CEnabled = false;
|
||||
// disable read continuous mode for all devices
|
||||
queryIndex = -1;
|
||||
// uncomment the following if or when the end() method is added to Wire library
|
||||
// Wire.end();
|
||||
}
|
||||
|
||||
/*==============================================================================
|
||||
* SETUP()
|
||||
*============================================================================*/
|
||||
|
||||
void systemResetCallback()
|
||||
{
|
||||
// initialize a defalt state
|
||||
FIRMATADEBUG.println(F("***RESET***"));
|
||||
// TODO: option to load config from EEPROM instead of default
|
||||
if (isI2CEnabled) {
|
||||
disableI2CPins();
|
||||
}
|
||||
for (byte i=0; i < TOTAL_PORTS; i++) {
|
||||
reportPINs[i] = false; // by default, reporting off
|
||||
portConfigInputs[i] = 0; // until activated
|
||||
previousPINs[i] = 0;
|
||||
}
|
||||
// pins with analog capability default to analog input
|
||||
// otherwise, pins default to digital output
|
||||
for (byte i=0; i < TOTAL_PINS; i++) {
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(i)) {
|
||||
// turns off pullup, configures everything
|
||||
setPinModeCallback(i, ANALOG);
|
||||
} else {
|
||||
// sets the output to 0, configures portConfigInputs
|
||||
setPinModeCallback(i, INPUT);
|
||||
}
|
||||
}
|
||||
// by default, do not report any analog inputs
|
||||
analogInputsToReport = 0;
|
||||
|
||||
/* send digital inputs to set the initial state on the host computer,
|
||||
* since once in the loop(), this firmware will only send on change */
|
||||
/*
|
||||
TODO: this can never execute, since no pins default to digital input
|
||||
but it will be needed when/if we support EEPROM stored config
|
||||
for (byte i=0; i < TOTAL_PORTS; i++) {
|
||||
outputPort(i, readPort(i, portConfigInputs[i]), true);
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
if (WAITFORSERIAL) {
|
||||
while (!FIRMATADEBUG) delay(1);
|
||||
}
|
||||
|
||||
FIRMATADEBUG.begin(9600);
|
||||
FIRMATADEBUG.println(F("Adafruit Bluefruit LE Firmata test"));
|
||||
|
||||
FIRMATADEBUG.print("Total pins: "); FIRMATADEBUG.println(NUM_DIGITAL_PINS);
|
||||
FIRMATADEBUG.print("Analog pins: "); FIRMATADEBUG.println(sizeof(boards_analogiopins));
|
||||
//for (uint8_t i=0; i<sizeof(boards_analogiopins); i++) {
|
||||
// FIRMATADEBUG.println(boards_analogiopins[i]);
|
||||
//}
|
||||
|
||||
BLE_Firmata.setUsablePins(boards_digitaliopins, sizeof(boards_digitaliopins),
|
||||
boards_analogiopins, sizeof(boards_analogiopins),
|
||||
boards_pwmpins, sizeof(boards_pwmpins),
|
||||
boards_servopins, sizeof(boards_servopins), SDA, SCL);
|
||||
|
||||
/* Initialise the module */
|
||||
FIRMATADEBUG.print(F("Initialising the Bluefruit LE module: "));
|
||||
|
||||
if ( !bluefruit.begin(VERBOSE_MODE) )
|
||||
{
|
||||
error(F("Couldn't find Bluefruit, make sure it's in CoMmanD mode & check wiring?"));
|
||||
}
|
||||
|
||||
FIRMATADEBUG.println( F("OK!") );
|
||||
|
||||
/* Perform a factory reset to make sure everything is in a known state */
|
||||
FIRMATADEBUG.println(F("Performing a factory reset: "));
|
||||
if (! bluefruit.factoryReset() ){
|
||||
error(F("Couldn't factory reset"));
|
||||
}
|
||||
|
||||
/* Disable command echo from Bluefruit */
|
||||
bluefruit.echo(false);
|
||||
|
||||
FIRMATADEBUG.println("Requesting Bluefruit info:");
|
||||
/* Print Bluefruit information */
|
||||
bluefruit.info();
|
||||
|
||||
FIRMATADEBUG.println("Setting name to BLE Firmata");
|
||||
bluefruit.println("AT+GAPDEVNAME=BLE_Firmata");
|
||||
|
||||
BTLEstatus = false;
|
||||
}
|
||||
|
||||
void firmataInit() {
|
||||
FIRMATADEBUG.println(F("Init firmata"));
|
||||
//BLE_Firmata.setFirmwareVersion(FIRMATA_MAJOR_VERSION, FIRMATA_MINOR_VERSION);
|
||||
//FIRMATADEBUG.println(F("firmata analog"));
|
||||
BLE_Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
|
||||
//FIRMATADEBUG.println(F("firmata digital"));
|
||||
BLE_Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
|
||||
//FIRMATADEBUG.println(F("firmata analog report"));
|
||||
BLE_Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
|
||||
//FIRMATADEBUG.println(F("firmata digital report"));
|
||||
BLE_Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
|
||||
//FIRMATADEBUG.println(F("firmata pinmode"));
|
||||
BLE_Firmata.attach(SET_PIN_MODE, setPinModeCallback);
|
||||
//FIRMATADEBUG.println(F("firmata sysex"));
|
||||
BLE_Firmata.attach(START_SYSEX, sysexCallback);
|
||||
//FIRMATADEBUG.println(F("firmata reset"));
|
||||
BLE_Firmata.attach(SYSTEM_RESET, systemResetCallback);
|
||||
|
||||
FIRMATADEBUG.println(F("Begin firmata"));
|
||||
BLE_Firmata.begin();
|
||||
systemResetCallback(); // reset to default config
|
||||
}
|
||||
/*==============================================================================
|
||||
* LOOP()
|
||||
*============================================================================*/
|
||||
|
||||
void loop()
|
||||
{
|
||||
delay(100);
|
||||
// Link status check
|
||||
if (! BTLEstatus) {
|
||||
bluefruit.setMode(BLUEFRUIT_MODE_COMMAND);
|
||||
BTLEstatus = bluefruit.isConnected();
|
||||
bluefruit.setMode(BLUEFRUIT_MODE_DATA);
|
||||
}
|
||||
|
||||
// Check if something has changed
|
||||
if (BTLEstatus != lastBTLEstatus) {
|
||||
// print it out!
|
||||
if (BTLEstatus == true) {
|
||||
FIRMATADEBUG.println(F("* Connected!"));
|
||||
// initialize Firmata cleanly
|
||||
bluefruit.setMode(BLUEFRUIT_MODE_DATA);
|
||||
firmataInit();
|
||||
}
|
||||
if (BTLEstatus == false) {
|
||||
FIRMATADEBUG.println(F("* Disconnected or advertising timed out"));
|
||||
}
|
||||
// OK set the last status change to this one
|
||||
lastBTLEstatus = BTLEstatus;
|
||||
}
|
||||
|
||||
// if not connected... bail
|
||||
if (! BTLEstatus) {
|
||||
delay(100);
|
||||
return;
|
||||
}
|
||||
|
||||
// For debugging, see if there's data on the serial console, we would forwad it to BTLE
|
||||
if (FIRMATADEBUG.available()) {
|
||||
bluefruit.write(FIRMATADEBUG.read());
|
||||
}
|
||||
|
||||
// Onto the Firmata main loop
|
||||
|
||||
byte pin, analogPin;
|
||||
|
||||
/* DIGITALREAD - as fast as possible, check for changes and output them to the
|
||||
* BTLE buffer using FIRMATADEBUG.print() */
|
||||
checkDigitalInputs();
|
||||
|
||||
/* SERIALREAD - processing incoming messagse as soon as possible, while still
|
||||
* checking digital inputs. */
|
||||
while(BLE_Firmata.available()) {
|
||||
// FIRMATADEBUG.println(F("*data available*"));
|
||||
BLE_Firmata.processInput();
|
||||
}
|
||||
/* SEND FTDI WRITE BUFFER - make sure that the FTDI buffer doesn't go over
|
||||
* 60 bytes. use a timer to sending an event character every 4 ms to
|
||||
* trigger the buffer to dump. */
|
||||
|
||||
// make the sampling interval longer if we have more analog inputs!
|
||||
uint8_t analogreportnums = 0;
|
||||
for(uint8_t a=0; a<8; a++) {
|
||||
if (analogInputsToReport & (1 << a)) {
|
||||
analogreportnums++;
|
||||
}
|
||||
}
|
||||
|
||||
samplingInterval = (uint16_t)MINIMUM_SAMPLE_DELAY + (uint16_t)ANALOG_SAMPLE_DELAY * (1+analogreportnums);
|
||||
|
||||
currentMillis = millis();
|
||||
if (currentMillis - previousMillis > samplingInterval) {
|
||||
previousMillis += samplingInterval;
|
||||
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
|
||||
|
||||
for(pin=0; pin<TOTAL_PINS; pin++) {
|
||||
// FIRMATADEBUG.print("pin #"); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(" config = "); FIRMATADEBUG.println(pinConfig[pin]);
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(pin) && (pinConfig[pin] == ANALOG)) {
|
||||
analogPin = BLE_Firmata.PIN_TO_ANALOG(pin);
|
||||
|
||||
if (analogInputsToReport & (1 << analogPin)) {
|
||||
int currentRead = analogRead(analogPin);
|
||||
|
||||
if ((lastAnalogReads[analogPin] == -1) || (lastAnalogReads[analogPin] != currentRead)) {
|
||||
//FIRMATADEBUG.print(F("Analog")); FIRMATADEBUG.print(analogPin); FIRMATADEBUG.print(F(" = ")); FIRMATADEBUG.println(currentRead);
|
||||
BLE_Firmata.sendAnalog(analogPin, currentRead);
|
||||
lastAnalogReads[analogPin] = currentRead;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// report i2c data for all device with read continuous mode enabled
|
||||
if (queryIndex > -1) {
|
||||
for (byte i = 0; i < queryIndex + 1; i++) {
|
||||
readAndReportData(query[i].addr, query[i].reg, query[i].bytes);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,54 @@
|
||||
// COMMON SETTINGS
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
// These settings are used in both SW UART, HW UART and SPI mode
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
#define BUFSIZE 128 // Size of the read buffer for incoming data
|
||||
#define VERBOSE_MODE true // If set to 'true' enables debug output
|
||||
|
||||
|
||||
// SOFTWARE UART SETTINGS
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
// The following macros declare the pins that will be used for 'SW' serial.
|
||||
// You should use this option if you are connecting the UART Friend to an UNO
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
#define BLUEFRUIT_SWUART_RXD_PIN 9 // Required for software serial!
|
||||
#define BLUEFRUIT_SWUART_TXD_PIN 10 // Required for software serial!
|
||||
#define BLUEFRUIT_UART_CTS_PIN 11 // Required for software serial!
|
||||
#define BLUEFRUIT_UART_RTS_PIN -1 // Optional, set to -1 if unused
|
||||
|
||||
|
||||
// HARDWARE UART SETTINGS
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
// The following macros declare the HW serial port you are using. Uncomment
|
||||
// this line if you are connecting the BLE to Leonardo/Micro or Flora
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
#define BLUEFRUIT_HWSERIAL_NAME Serial1
|
||||
|
||||
|
||||
// SHARED UART SETTINGS
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
// The following sets the optional Mode pin, its recommended but not required
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
#define BLUEFRUIT_UART_MODE_PIN 12 // Set to -1 if unused
|
||||
|
||||
|
||||
// SHARED SPI SETTINGS
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
// The following macros declare the pins to use for HW and SW SPI communication.
|
||||
// SCK, MISO and MOSI should be connected to the HW SPI pins on the Uno when
|
||||
// using HW SPI. This should be used with nRF51822 based Bluefruit LE modules
|
||||
// that use SPI (Bluefruit LE SPI Friend).
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
#define BLUEFRUIT_SPI_CS 8
|
||||
#define BLUEFRUIT_SPI_IRQ 7
|
||||
#define BLUEFRUIT_SPI_RST 4
|
||||
|
||||
// SOFTWARE SPI SETTINGS
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
// The following macros declare the pins to use for SW SPI communication.
|
||||
// This should be used with nRF51822 based Bluefruit LE modules that use SPI
|
||||
// (Bluefruit LE SPI Friend).
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
#define BLUEFRUIT_SPI_SCK 13
|
||||
#define BLUEFRUIT_SPI_MISO 12
|
||||
#define BLUEFRUIT_SPI_MOSI 11
|
||||
@@ -0,0 +1,851 @@
|
||||
// Adafruit Circuit Playground Bluefruit LE Friend Firmata Firmware
|
||||
//
|
||||
// This is a basic 'standard firmata' firmware that allows digital IO and other
|
||||
// control of some (but not all) Circuit Playground components. You can read
|
||||
// the push buttons (digital pins 4, 19) and slide switch (pin 21). You can light
|
||||
// up the onboard pin 13 LED, but you can't light the NeoPixels on the board
|
||||
// with this sketch (standard firmata doesn't support NeoPixels right now).
|
||||
//
|
||||
// Note this sketch is customized to ONLY work with Circuit Playground. Trying
|
||||
// to use this sketch on other boards will NOT work. Use the BluefruitLE_nrf51822
|
||||
// example instead and customize it for your board.
|
||||
//
|
||||
// By default this sketch assumes you are connecting to a Bluefruit LE friend
|
||||
// using a hardware serial connection which is easiest on Circuit Playground.
|
||||
// The Flora Bluefruit LE module (https://www.adafruit.com/products/2487) is the
|
||||
// best option as it can easily be connected to Circuit Playground with alligator
|
||||
// clips.
|
||||
//
|
||||
// Make the following connections between the Bluefruit LE module and Circuit Playground:
|
||||
// - Bluefruit LE RX -> Circuit Playground TX #1
|
||||
// - Bluefruit LE TX -> Circuit Playground RX #0
|
||||
// - Bluefruit LE 3.3V -> Circuit Playground 3.3V
|
||||
// - Bluefruit LE GND -> Circuit Playground GND
|
||||
// - Bluefruit LE MODE -> Circuit Playground #12 (or any other digital input
|
||||
// on Circuit Playground, but make sure to modify BluefruitConfig.h too!)
|
||||
//
|
||||
// Finally make sure the Bluefruit LE slide switch is in the DATA position. This
|
||||
// is VERY important and the sketch won't work if it's in the CMD command mode!
|
||||
#include <Servo.h>
|
||||
#include <Wire.h>
|
||||
#include <SPI.h>
|
||||
#include <Adafruit_BLE_Firmata.h>
|
||||
|
||||
// Change this to whatever is the Serial console you want, either Serial or SerialUSB
|
||||
#define FIRMATADEBUG Serial
|
||||
// Pause for Serial console before beginning?
|
||||
#define WAITFORSERIAL false
|
||||
// Print all BLE interactions?
|
||||
#define VERBOSE_MODE false
|
||||
|
||||
|
||||
/************************ CONFIGURATION SECTION ***********************************/
|
||||
// You don't need to change this, it's setup for Circuit Playground already:
|
||||
uint8_t boards_digitaliopins[] = {2,3,4,5,6,9,10,13,19,21};
|
||||
uint8_t boards_analogiopins[] = {A0, A4, A5}; // A0 == digital 14, etc
|
||||
uint8_t boards_pwmpins[] = {5, 6, 9, 10, 13};
|
||||
uint8_t boards_servopins[] = {9, 10};
|
||||
uint8_t boards_i2cpins[] = {SDA, SCL};
|
||||
|
||||
#define TOTAL_PINS NUM_DIGITAL_PINS /* highest number in boards_digitaliopins MEMEFIXME:automate */
|
||||
#define TOTAL_PORTS ((TOTAL_PINS + 7) / 8)
|
||||
|
||||
/***********************************************************/
|
||||
|
||||
|
||||
#include "Adafruit_BLE_Firmata_Boards.h"
|
||||
|
||||
#include "Adafruit_BLE.h"
|
||||
#include "Adafruit_BluefruitLE_SPI.h"
|
||||
#include "Adafruit_BluefruitLE_UART.h"
|
||||
#include "BluefruitConfig.h"
|
||||
|
||||
|
||||
// Create the bluefruit object, either software serial...uncomment these lines
|
||||
/*
|
||||
SoftwareSerial bluefruitSS = SoftwareSerial(BLUEFRUIT_SWUART_TXD_PIN, BLUEFRUIT_SWUART_RXD_PIN);
|
||||
|
||||
Adafruit_BluefruitLE_UART bluefruit(bluefruitSS, BLUEFRUIT_UART_MODE_PIN,
|
||||
BLUEFRUIT_UART_CTS_PIN, BLUEFRUIT_UART_RTS_PIN);
|
||||
*/
|
||||
|
||||
/* ...or hardware serial, which does not need the RTS/CTS pins. Uncomment this line */
|
||||
Adafruit_BluefruitLE_UART bluefruit(BLUEFRUIT_HWSERIAL_NAME, BLUEFRUIT_UART_MODE_PIN);
|
||||
|
||||
/* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user selected CS/IRQ/RST */
|
||||
//Adafruit_BluefruitLE_SPI bluefruit(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);
|
||||
|
||||
/* ...software SPI, using SCK/MOSI/MISO user-defined SPI pins and then user selected CS/IRQ/RST */
|
||||
//Adafruit_BluefruitLE_SPI bluefruit(BLUEFRUIT_SPI_SCK, BLUEFRUIT_SPI_MISO,
|
||||
// BLUEFRUIT_SPI_MOSI, BLUEFRUIT_SPI_CS,
|
||||
// BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);
|
||||
|
||||
|
||||
#define AUTO_INPUT_PULLUPS true
|
||||
|
||||
// our current connection status
|
||||
boolean lastBTLEstatus, BTLEstatus;
|
||||
|
||||
// make one instance for the user to use
|
||||
Adafruit_BLE_FirmataClass BLE_Firmata = Adafruit_BLE_FirmataClass(bluefruit);
|
||||
|
||||
// A small helper
|
||||
void error(const __FlashStringHelper*err) {
|
||||
FIRMATADEBUG.println(err);
|
||||
while (1);
|
||||
}
|
||||
|
||||
/*==============================================================================
|
||||
* GLOBAL VARIABLES
|
||||
*============================================================================*/
|
||||
|
||||
/* analog inputs */
|
||||
int analogInputsToReport = 0; // bitwise array to store pin reporting
|
||||
int lastAnalogReads[NUM_ANALOG_INPUTS];
|
||||
|
||||
/* digital input ports */
|
||||
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
|
||||
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
|
||||
|
||||
/* pins configuration */
|
||||
byte pinConfig[TOTAL_PINS]; // configuration of every pin
|
||||
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
|
||||
int pinState[TOTAL_PINS]; // any value that has been written
|
||||
|
||||
/* timer variables */
|
||||
unsigned long currentMillis; // store the current value from millis()
|
||||
unsigned long previousMillis; // for comparison with currentMillis
|
||||
int samplingInterval = 200; // how often to run the main loop (in ms)
|
||||
#define MINIMUM_SAMPLE_DELAY 150
|
||||
#define ANALOG_SAMPLE_DELAY 50
|
||||
|
||||
|
||||
/* i2c data */
|
||||
struct i2c_device_info {
|
||||
byte addr;
|
||||
byte reg;
|
||||
byte bytes;
|
||||
};
|
||||
|
||||
/* for i2c read continuous more */
|
||||
i2c_device_info query[MAX_QUERIES];
|
||||
|
||||
byte i2cRxData[32];
|
||||
boolean isI2CEnabled = false;
|
||||
signed char queryIndex = -1;
|
||||
unsigned int i2cReadDelayTime = 0; // default delay time between i2c read request and Wire.requestFrom()
|
||||
|
||||
Servo servos[MAX_SERVOS];
|
||||
/*==============================================================================
|
||||
* FUNCTIONS
|
||||
*============================================================================*/
|
||||
|
||||
void readAndReportData(byte address, int theRegister, byte numBytes) {
|
||||
// allow I2C requests that don't require a register read
|
||||
// for example, some devices using an interrupt pin to signify new data available
|
||||
// do not always require the register read so upon interrupt you call Wire.requestFrom()
|
||||
if (theRegister != REGISTER_NOT_SPECIFIED) {
|
||||
Wire.beginTransmission(address);
|
||||
#if ARDUINO >= 100
|
||||
Wire.write((byte)theRegister);
|
||||
#else
|
||||
Wire.send((byte)theRegister);
|
||||
#endif
|
||||
Wire.endTransmission();
|
||||
delayMicroseconds(i2cReadDelayTime); // delay is necessary for some devices such as WiiNunchuck
|
||||
} else {
|
||||
theRegister = 0; // fill the register with a dummy value
|
||||
}
|
||||
|
||||
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
|
||||
|
||||
// check to be sure correct number of bytes were returned by slave
|
||||
if(numBytes == Wire.available()) {
|
||||
i2cRxData[0] = address;
|
||||
i2cRxData[1] = theRegister;
|
||||
for (int i = 0; i < numBytes; i++) {
|
||||
#if ARDUINO >= 100
|
||||
i2cRxData[2 + i] = Wire.read();
|
||||
#else
|
||||
i2cRxData[2 + i] = Wire.receive();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else {
|
||||
if(numBytes > Wire.available()) {
|
||||
BLE_Firmata.sendString("I2C Read Error: Too many bytes received");
|
||||
} else {
|
||||
BLE_Firmata.sendString("I2C Read Error: Too few bytes received");
|
||||
}
|
||||
}
|
||||
|
||||
// send slave address, register and received bytes
|
||||
BLE_Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
|
||||
}
|
||||
|
||||
void outputPort(byte portNumber, byte portValue, byte forceSend)
|
||||
{
|
||||
// pins not configured as INPUT are cleared to zeros
|
||||
portValue = portValue & portConfigInputs[portNumber];
|
||||
// only send if the value is different than previously sent
|
||||
if(forceSend || previousPINs[portNumber] != portValue) {
|
||||
//FIRMATADEBUG.print(F("Sending update for port ")); FIRMATADEBUG.print(portNumber); FIRMATADEBUG.print(" = 0x"); FIRMATADEBUG.println(portValue, HEX);
|
||||
BLE_Firmata.sendDigitalPort(portNumber, portValue);
|
||||
previousPINs[portNumber] = portValue;
|
||||
}
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------------------------
|
||||
* check all the active digital inputs for change of state, then add any events
|
||||
* to the Serial output queue using () */
|
||||
void checkDigitalInputs(boolean forceSend = false)
|
||||
{
|
||||
/* Using non-looping code allows constants to be given to readPort().
|
||||
* The compiler will apply substantial optimizations if the inputs
|
||||
* to readPort() are compile-time constants. */
|
||||
for (uint8_t i=0; i<TOTAL_PORTS; i++) {
|
||||
if (reportPINs[i]) {
|
||||
// FIRMATADEBUG.print("Reporting on port "); FIRMATADEBUG.print(i); FIRMATADEBUG.print(" mask 0x"); FIRMATADEBUG.println(portConfigInputs[i], HEX);
|
||||
uint8_t x = BLE_Firmata.readPort(i, portConfigInputs[i]);
|
||||
// FIRMATADEBUG.print("Read 0x"); FIRMATADEBUG.println(x, HEX);
|
||||
outputPort(i, x, forceSend);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/* sets the pin mode to the correct state and sets the relevant bits in the
|
||||
* two bit-arrays that track Digital I/O and PWM status
|
||||
*/
|
||||
void setPinModeCallback(byte pin, int mode)
|
||||
{
|
||||
//FIRMATADEBUG.print("Setting pin #"); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(" to "); FIRMATADEBUG.println(mode);
|
||||
if ((pinConfig[pin] == I2C) && (isI2CEnabled) && (mode != I2C)) {
|
||||
// disable i2c so pins can be used for other functions
|
||||
// the following if statements should reconfigure the pins properly
|
||||
disableI2CPins();
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin) && mode != SERVO && servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached()) {
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].detach();
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
|
||||
reportAnalogCallback(BLE_Firmata.PIN_TO_ANALOG(pin), mode == ANALOG ? 1 : 0); // turn on/off reporting
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
if (mode == INPUT) {
|
||||
portConfigInputs[pin/8] |= (1 << (pin & 7));
|
||||
} else {
|
||||
portConfigInputs[pin/8] &= ~(1 << (pin & 7));
|
||||
}
|
||||
// FIRMATADEBUG.print(F("Setting pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(F(" port config mask to = 0x"));
|
||||
// FIRMATADEBUG.println(portConfigInputs[pin/8], HEX);
|
||||
}
|
||||
pinState[pin] = 0;
|
||||
switch(mode) {
|
||||
case ANALOG:
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
|
||||
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to analog"));
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT); // disable output driver
|
||||
}
|
||||
pinConfig[pin] = ANALOG;
|
||||
lastAnalogReads[BLE_Firmata.PIN_TO_ANALOG(pin)] = -1;
|
||||
}
|
||||
break;
|
||||
case INPUT:
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to input"));
|
||||
|
||||
if (AUTO_INPUT_PULLUPS) {
|
||||
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT_PULLUP); // disable output driver
|
||||
} else {
|
||||
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT); // disable output driver
|
||||
}
|
||||
pinConfig[pin] = INPUT;
|
||||
|
||||
// force sending state immediately
|
||||
//delay(10);
|
||||
//checkDigitalInputs(true);
|
||||
}
|
||||
break;
|
||||
case OUTPUT:
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to output"));
|
||||
digitalWrite(BLE_Firmata.PIN_TO_DIGITAL(pin), LOW); // disable PWM
|
||||
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), OUTPUT);
|
||||
pinConfig[pin] = OUTPUT;
|
||||
}
|
||||
break;
|
||||
case PWM:
|
||||
if (BLE_Firmata.IS_PIN_PWM(pin)) {
|
||||
FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to PWM"));
|
||||
pinMode(BLE_Firmata.PIN_TO_PWM(pin), OUTPUT);
|
||||
analogWrite(BLE_Firmata.PIN_TO_PWM(pin), 0);
|
||||
pinConfig[pin] = PWM;
|
||||
}
|
||||
break;
|
||||
case SERVO:
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
|
||||
pinConfig[pin] = SERVO;
|
||||
if (!servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached()) {
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].attach(BLE_Firmata.PIN_TO_DIGITAL(pin));
|
||||
}
|
||||
}
|
||||
break;
|
||||
case I2C:
|
||||
if (BLE_Firmata.IS_PIN_I2C(pin)) {
|
||||
// mark the pin as i2c
|
||||
// the user must call I2C_CONFIG to enable I2C for a device
|
||||
pinConfig[pin] = I2C;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
FIRMATADEBUG.print(F("Unknown pin mode")); // TODO: put error msgs in EEPROM
|
||||
}
|
||||
// TODO: save status to EEPROM here, if changed
|
||||
}
|
||||
|
||||
void analogWriteCallback(byte pin, int value)
|
||||
{
|
||||
if (pin < TOTAL_PINS) {
|
||||
switch(pinConfig[pin]) {
|
||||
case SERVO:
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin))
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].write(value);
|
||||
pinState[pin] = value;
|
||||
break;
|
||||
case PWM:
|
||||
if (BLE_Firmata.IS_PIN_PWM(pin))
|
||||
analogWrite(BLE_Firmata.PIN_TO_PWM(pin), value);
|
||||
FIRMATADEBUG.print("pwm("); FIRMATADEBUG.print(BLE_Firmata.PIN_TO_PWM(pin)); FIRMATADEBUG.print(","); FIRMATADEBUG.print(value); FIRMATADEBUG.println(")");
|
||||
pinState[pin] = value;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void digitalWriteCallback(byte port, int value)
|
||||
{
|
||||
//FIRMATADEBUG.print("DWCx"); FIRMATADEBUG.print(port, HEX); FIRMATADEBUG.print(" "); FIRMATADEBUG.println(value);
|
||||
byte pin, lastPin, mask=1, pinWriteMask=0;
|
||||
|
||||
if (port < TOTAL_PORTS) {
|
||||
// create a mask of the pins on this port that are writable.
|
||||
lastPin = port*8+8;
|
||||
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
|
||||
for (pin=port*8; pin < lastPin; pin++) {
|
||||
// do not disturb non-digital pins (eg, Rx & Tx)
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
// only write to OUTPUT
|
||||
// do not touch pins in PWM, ANALOG, SERVO or other modes
|
||||
if (pinConfig[pin] == OUTPUT) {
|
||||
pinWriteMask |= mask;
|
||||
pinState[pin] = ((byte)value & mask) ? 1 : 0;
|
||||
}
|
||||
}
|
||||
mask = mask << 1;
|
||||
}
|
||||
FIRMATADEBUG.print(F("Write digital port #")); FIRMATADEBUG.print(port);
|
||||
FIRMATADEBUG.print(F(" = 0x")); FIRMATADEBUG.print(value, HEX);
|
||||
FIRMATADEBUG.print(F(" mask = 0x")); FIRMATADEBUG.println(pinWriteMask, HEX);
|
||||
BLE_Firmata.writePort(port, (byte)value, pinWriteMask);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
|
||||
*/
|
||||
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
|
||||
//}
|
||||
void reportAnalogCallback(byte analogPin, int value)
|
||||
{
|
||||
if (analogPin < BLE_Firmata._num_analogiopins) {
|
||||
if(value == 0) {
|
||||
analogInputsToReport = analogInputsToReport &~ (1 << analogPin);
|
||||
FIRMATADEBUG.print(F("Stop reporting analog pin #")); FIRMATADEBUG.println(analogPin);
|
||||
} else {
|
||||
analogInputsToReport |= (1 << analogPin);
|
||||
FIRMATADEBUG.print(F("Will report analog pin #")); FIRMATADEBUG.println(analogPin);
|
||||
}
|
||||
}
|
||||
// TODO: save status to EEPROM here, if changed
|
||||
}
|
||||
|
||||
void reportDigitalCallback(byte port, int value)
|
||||
{
|
||||
if (port < TOTAL_PORTS) {
|
||||
//FIRMATADEBUG.print(F("Will report 0x")); FIRMATADEBUG.print(value, HEX); FIRMATADEBUG.print(F(" digital mask on port ")); FIRMATADEBUG.println(port);
|
||||
reportPINs[port] = (byte)value;
|
||||
}
|
||||
// do not disable analog reporting on these 8 pins, to allow some
|
||||
// pins used for digital, others analog. Instead, allow both types
|
||||
// of reporting to be enabled, but check if the pin is configured
|
||||
// as analog when sampling the analog inputs. Likewise, while
|
||||
// scanning digital pins, portConfigInputs will mask off values from any
|
||||
// pins configured as analog
|
||||
}
|
||||
|
||||
/*==============================================================================
|
||||
* SYSEX-BASED commands
|
||||
*============================================================================*/
|
||||
|
||||
void sysexCallback(byte command, byte argc, byte *argv)
|
||||
{
|
||||
byte mode;
|
||||
byte slaveAddress;
|
||||
byte slaveRegister;
|
||||
byte data;
|
||||
unsigned int delayTime;
|
||||
|
||||
FIRMATADEBUG.println("********** Sysex callback");
|
||||
switch(command) {
|
||||
case I2C_REQUEST:
|
||||
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
|
||||
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
|
||||
//BLE_Firmata.sendString("10-bit addressing mode is not yet supported");
|
||||
FIRMATADEBUG.println(F("10-bit addressing mode is not yet supported"));
|
||||
return;
|
||||
}
|
||||
else {
|
||||
slaveAddress = argv[0];
|
||||
}
|
||||
|
||||
switch(mode) {
|
||||
case I2C_WRITE:
|
||||
Wire.beginTransmission(slaveAddress);
|
||||
for (byte i = 2; i < argc; i += 2) {
|
||||
data = argv[i] + (argv[i + 1] << 7);
|
||||
#if ARDUINO >= 100
|
||||
Wire.write(data);
|
||||
#else
|
||||
Wire.send(data);
|
||||
#endif
|
||||
}
|
||||
Wire.endTransmission();
|
||||
delayMicroseconds(70);
|
||||
break;
|
||||
case I2C_READ:
|
||||
if (argc == 6) {
|
||||
// a slave register is specified
|
||||
slaveRegister = argv[2] + (argv[3] << 7);
|
||||
data = argv[4] + (argv[5] << 7); // bytes to read
|
||||
readAndReportData(slaveAddress, (int)slaveRegister, data);
|
||||
}
|
||||
else {
|
||||
// a slave register is NOT specified
|
||||
data = argv[2] + (argv[3] << 7); // bytes to read
|
||||
readAndReportData(slaveAddress, (int)REGISTER_NOT_SPECIFIED, data);
|
||||
}
|
||||
break;
|
||||
case I2C_READ_CONTINUOUSLY:
|
||||
if ((queryIndex + 1) >= MAX_QUERIES) {
|
||||
// too many queries, just ignore
|
||||
BLE_Firmata.sendString("too many queries");
|
||||
break;
|
||||
}
|
||||
queryIndex++;
|
||||
query[queryIndex].addr = slaveAddress;
|
||||
query[queryIndex].reg = argv[2] + (argv[3] << 7);
|
||||
query[queryIndex].bytes = argv[4] + (argv[5] << 7);
|
||||
break;
|
||||
case I2C_STOP_READING:
|
||||
byte queryIndexToSkip;
|
||||
// if read continuous mode is enabled for only 1 i2c device, disable
|
||||
// read continuous reporting for that device
|
||||
if (queryIndex <= 0) {
|
||||
queryIndex = -1;
|
||||
} else {
|
||||
// if read continuous mode is enabled for multiple devices,
|
||||
// determine which device to stop reading and remove it's data from
|
||||
// the array, shifiting other array data to fill the space
|
||||
for (byte i = 0; i < queryIndex + 1; i++) {
|
||||
if (query[i].addr = slaveAddress) {
|
||||
queryIndexToSkip = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (byte i = queryIndexToSkip; i<queryIndex + 1; i++) {
|
||||
if (i < MAX_QUERIES) {
|
||||
query[i].addr = query[i+1].addr;
|
||||
query[i].reg = query[i+1].addr;
|
||||
query[i].bytes = query[i+1].bytes;
|
||||
}
|
||||
}
|
||||
queryIndex--;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case I2C_CONFIG:
|
||||
delayTime = (argv[0] + (argv[1] << 7));
|
||||
|
||||
if(delayTime > 0) {
|
||||
i2cReadDelayTime = delayTime;
|
||||
}
|
||||
|
||||
if (!isI2CEnabled) {
|
||||
enableI2CPins();
|
||||
}
|
||||
|
||||
break;
|
||||
case SERVO_CONFIG:
|
||||
if(argc > 4) {
|
||||
// these vars are here for clarity, they'll optimized away by the compiler
|
||||
byte pin = argv[0];
|
||||
int minPulse = argv[1] + (argv[2] << 7);
|
||||
int maxPulse = argv[3] + (argv[4] << 7);
|
||||
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
|
||||
if (servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached())
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].detach();
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].attach(BLE_Firmata.PIN_TO_DIGITAL(pin), minPulse, maxPulse);
|
||||
setPinModeCallback(pin, SERVO);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case SAMPLING_INTERVAL:
|
||||
if (argc > 1) {
|
||||
samplingInterval = argv[0] + (argv[1] << 7);
|
||||
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
|
||||
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
|
||||
}
|
||||
} else {
|
||||
//BLE_Firmata.sendString("Not enough data");
|
||||
}
|
||||
break;
|
||||
case EXTENDED_ANALOG:
|
||||
if (argc > 1) {
|
||||
int val = argv[1];
|
||||
if (argc > 2) val |= (argv[2] << 7);
|
||||
if (argc > 3) val |= (argv[3] << 14);
|
||||
analogWriteCallback(argv[0], val);
|
||||
}
|
||||
break;
|
||||
case CAPABILITY_QUERY:
|
||||
bluefruit.write(START_SYSEX);
|
||||
bluefruit.write(CAPABILITY_RESPONSE);
|
||||
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(START_SYSEX, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(CAPABILITY_RESPONSE, HEX);
|
||||
delay(10);
|
||||
for (byte pin=0; pin < TOTAL_PINS; pin++) {
|
||||
//FIRMATADEBUG.print("\t#"); FIRMATADEBUG.println(pin);
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
bluefruit.write((byte)INPUT);
|
||||
bluefruit.write(1);
|
||||
bluefruit.write((byte)OUTPUT);
|
||||
bluefruit.write(1);
|
||||
|
||||
/*
|
||||
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(INPUT, HEX);
|
||||
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(1, HEX);
|
||||
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(OUTPUT, HEX);
|
||||
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(1, HEX);
|
||||
*/
|
||||
delay(20);
|
||||
} else {
|
||||
bluefruit.write(127);
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(127, HEX);
|
||||
delay(20);
|
||||
continue;
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
|
||||
bluefruit.write(ANALOG);
|
||||
bluefruit.write(10);
|
||||
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(ANALOG, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(10, HEX);
|
||||
delay(20);
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_PWM(pin)) {
|
||||
bluefruit.write(PWM);
|
||||
bluefruit.write(8);
|
||||
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(PWM, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(8, HEX);
|
||||
delay(20);
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
|
||||
bluefruit.write(SERVO);
|
||||
bluefruit.write(14);
|
||||
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(SERVO, HEX);FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(14, HEX);
|
||||
delay(20);
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_I2C(pin)) {
|
||||
bluefruit.write(I2C);
|
||||
bluefruit.write(1); // to do: determine appropriate value
|
||||
delay(20);
|
||||
}
|
||||
bluefruit.write(127);
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(127, HEX);
|
||||
}
|
||||
bluefruit.write(END_SYSEX);
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(END_SYSEX, HEX);
|
||||
break;
|
||||
case PIN_STATE_QUERY:
|
||||
if (argc > 0) {
|
||||
byte pin=argv[0];
|
||||
bluefruit.write(START_SYSEX);
|
||||
bluefruit.write(PIN_STATE_RESPONSE);
|
||||
bluefruit.write(pin);
|
||||
if (pin < TOTAL_PINS) {
|
||||
bluefruit.write((byte)pinConfig[pin]);
|
||||
bluefruit.write((byte)pinState[pin] & 0x7F);
|
||||
if (pinState[pin] & 0xFF80) bluefruit.write((byte)(pinState[pin] >> 7) & 0x7F);
|
||||
if (pinState[pin] & 0xC000) bluefruit.write((byte)(pinState[pin] >> 14) & 0x7F);
|
||||
}
|
||||
bluefruit.write(END_SYSEX);
|
||||
}
|
||||
break;
|
||||
case ANALOG_MAPPING_QUERY:
|
||||
FIRMATADEBUG.println("Analog mapping query");
|
||||
bluefruit.write(START_SYSEX);
|
||||
bluefruit.write(ANALOG_MAPPING_RESPONSE);
|
||||
for (byte pin=0; pin < TOTAL_PINS; pin++) {
|
||||
bluefruit.write(BLE_Firmata.IS_PIN_ANALOG(pin) ? BLE_Firmata.PIN_TO_ANALOG(pin) : 127);
|
||||
}
|
||||
bluefruit.write(END_SYSEX);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void enableI2CPins()
|
||||
{
|
||||
byte i;
|
||||
// is there a faster way to do this? would probaby require importing
|
||||
// Arduino.h to get SCL and SDA pins
|
||||
for (i=0; i < TOTAL_PINS; i++) {
|
||||
if(BLE_Firmata.IS_PIN_I2C(i)) {
|
||||
// mark pins as i2c so they are ignore in non i2c data requests
|
||||
setPinModeCallback(i, I2C);
|
||||
}
|
||||
}
|
||||
|
||||
isI2CEnabled = true;
|
||||
|
||||
// is there enough time before the first I2C request to call this here?
|
||||
Wire.begin();
|
||||
}
|
||||
|
||||
/* disable the i2c pins so they can be used for other functions */
|
||||
void disableI2CPins() {
|
||||
isI2CEnabled = false;
|
||||
// disable read continuous mode for all devices
|
||||
queryIndex = -1;
|
||||
// uncomment the following if or when the end() method is added to Wire library
|
||||
// Wire.end();
|
||||
}
|
||||
|
||||
/*==============================================================================
|
||||
* SETUP()
|
||||
*============================================================================*/
|
||||
|
||||
void systemResetCallback()
|
||||
{
|
||||
// initialize a defalt state
|
||||
FIRMATADEBUG.println(F("***RESET***"));
|
||||
// TODO: option to load config from EEPROM instead of default
|
||||
if (isI2CEnabled) {
|
||||
disableI2CPins();
|
||||
}
|
||||
for (byte i=0; i < TOTAL_PORTS; i++) {
|
||||
reportPINs[i] = false; // by default, reporting off
|
||||
portConfigInputs[i] = 0; // until activated
|
||||
previousPINs[i] = 0;
|
||||
}
|
||||
// pins with analog capability default to analog input
|
||||
// otherwise, pins default to digital output
|
||||
for (byte i=0; i < TOTAL_PINS; i++) {
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(i)) {
|
||||
// turns off pullup, configures everything
|
||||
setPinModeCallback(i, ANALOG);
|
||||
} else {
|
||||
// sets the output to 0, configures portConfigInputs
|
||||
setPinModeCallback(i, INPUT);
|
||||
}
|
||||
}
|
||||
// by default, do not report any analog inputs
|
||||
analogInputsToReport = 0;
|
||||
|
||||
/* send digital inputs to set the initial state on the host computer,
|
||||
* since once in the loop(), this firmware will only send on change */
|
||||
/*
|
||||
TODO: this can never execute, since no pins default to digital input
|
||||
but it will be needed when/if we support EEPROM stored config
|
||||
for (byte i=0; i < TOTAL_PORTS; i++) {
|
||||
outputPort(i, readPort(i, portConfigInputs[i]), true);
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
if (WAITFORSERIAL) {
|
||||
while (!FIRMATADEBUG) delay(1);
|
||||
}
|
||||
|
||||
FIRMATADEBUG.begin(9600);
|
||||
FIRMATADEBUG.println(F("Adafruit Bluefruit LE Firmata test"));
|
||||
|
||||
FIRMATADEBUG.print("Total pins: "); FIRMATADEBUG.println(NUM_DIGITAL_PINS);
|
||||
FIRMATADEBUG.print("Analog pins: "); FIRMATADEBUG.println(sizeof(boards_analogiopins));
|
||||
//for (uint8_t i=0; i<sizeof(boards_analogiopins); i++) {
|
||||
// FIRMATADEBUG.println(boards_analogiopins[i]);
|
||||
//}
|
||||
|
||||
BLE_Firmata.setUsablePins(boards_digitaliopins, sizeof(boards_digitaliopins),
|
||||
boards_analogiopins, sizeof(boards_analogiopins),
|
||||
boards_pwmpins, sizeof(boards_pwmpins),
|
||||
boards_servopins, sizeof(boards_servopins), SDA, SCL);
|
||||
|
||||
/* Initialise the module */
|
||||
FIRMATADEBUG.print(F("Initialising the Bluefruit LE module: "));
|
||||
|
||||
if ( !bluefruit.begin(VERBOSE_MODE) )
|
||||
{
|
||||
error(F("Couldn't find Bluefruit, make sure it's in CoMmanD mode & check wiring?"));
|
||||
}
|
||||
|
||||
FIRMATADEBUG.println( F("OK!") );
|
||||
|
||||
/* Perform a factory reset to make sure everything is in a known state */
|
||||
FIRMATADEBUG.println(F("Performing a factory reset: "));
|
||||
if (! bluefruit.factoryReset() ){
|
||||
error(F("Couldn't factory reset"));
|
||||
}
|
||||
|
||||
/* Disable command echo from Bluefruit */
|
||||
bluefruit.echo(false);
|
||||
|
||||
FIRMATADEBUG.println("Requesting Bluefruit info:");
|
||||
/* Print Bluefruit information */
|
||||
bluefruit.info();
|
||||
|
||||
FIRMATADEBUG.println("Setting name to BLE Firmata");
|
||||
bluefruit.println("AT+GAPDEVNAME=BLE_Firmata");
|
||||
|
||||
BTLEstatus = false;
|
||||
}
|
||||
|
||||
void firmataInit() {
|
||||
FIRMATADEBUG.println(F("Init firmata"));
|
||||
//BLE_Firmata.setFirmwareVersion(FIRMATA_MAJOR_VERSION, FIRMATA_MINOR_VERSION);
|
||||
//FIRMATADEBUG.println(F("firmata analog"));
|
||||
BLE_Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
|
||||
//FIRMATADEBUG.println(F("firmata digital"));
|
||||
BLE_Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
|
||||
//FIRMATADEBUG.println(F("firmata analog report"));
|
||||
BLE_Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
|
||||
//FIRMATADEBUG.println(F("firmata digital report"));
|
||||
BLE_Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
|
||||
//FIRMATADEBUG.println(F("firmata pinmode"));
|
||||
BLE_Firmata.attach(SET_PIN_MODE, setPinModeCallback);
|
||||
//FIRMATADEBUG.println(F("firmata sysex"));
|
||||
BLE_Firmata.attach(START_SYSEX, sysexCallback);
|
||||
//FIRMATADEBUG.println(F("firmata reset"));
|
||||
BLE_Firmata.attach(SYSTEM_RESET, systemResetCallback);
|
||||
|
||||
FIRMATADEBUG.println(F("Begin firmata"));
|
||||
BLE_Firmata.begin();
|
||||
systemResetCallback(); // reset to default config
|
||||
}
|
||||
/*==============================================================================
|
||||
* LOOP()
|
||||
*============================================================================*/
|
||||
|
||||
void loop()
|
||||
{
|
||||
delay(100);
|
||||
// Link status check
|
||||
if (! BTLEstatus) {
|
||||
bluefruit.setMode(BLUEFRUIT_MODE_COMMAND);
|
||||
BTLEstatus = bluefruit.isConnected();
|
||||
bluefruit.setMode(BLUEFRUIT_MODE_DATA);
|
||||
}
|
||||
|
||||
// Check if something has changed
|
||||
if (BTLEstatus != lastBTLEstatus) {
|
||||
// print it out!
|
||||
if (BTLEstatus == true) {
|
||||
FIRMATADEBUG.println(F("* Connected!"));
|
||||
// initialize Firmata cleanly
|
||||
bluefruit.setMode(BLUEFRUIT_MODE_DATA);
|
||||
firmataInit();
|
||||
}
|
||||
if (BTLEstatus == false) {
|
||||
FIRMATADEBUG.println(F("* Disconnected or advertising timed out"));
|
||||
}
|
||||
// OK set the last status change to this one
|
||||
lastBTLEstatus = BTLEstatus;
|
||||
}
|
||||
|
||||
// if not connected... bail
|
||||
if (! BTLEstatus) {
|
||||
delay(100);
|
||||
return;
|
||||
}
|
||||
|
||||
// For debugging, see if there's data on the serial console, we would forwad it to BTLE
|
||||
if (FIRMATADEBUG.available()) {
|
||||
bluefruit.write(FIRMATADEBUG.read());
|
||||
}
|
||||
|
||||
// Onto the Firmata main loop
|
||||
|
||||
byte pin, analogPin;
|
||||
|
||||
/* DIGITALREAD - as fast as possible, check for changes and output them to the
|
||||
* BTLE buffer using FIRMATADEBUG.print() */
|
||||
checkDigitalInputs();
|
||||
|
||||
/* SERIALREAD - processing incoming messagse as soon as possible, while still
|
||||
* checking digital inputs. */
|
||||
while(BLE_Firmata.available()) {
|
||||
// FIRMATADEBUG.println(F("*data available*"));
|
||||
BLE_Firmata.processInput();
|
||||
}
|
||||
/* SEND FTDI WRITE BUFFER - make sure that the FTDI buffer doesn't go over
|
||||
* 60 bytes. use a timer to sending an event character every 4 ms to
|
||||
* trigger the buffer to dump. */
|
||||
|
||||
// make the sampling interval longer if we have more analog inputs!
|
||||
uint8_t analogreportnums = 0;
|
||||
for(uint8_t a=0; a<8; a++) {
|
||||
if (analogInputsToReport & (1 << a)) {
|
||||
analogreportnums++;
|
||||
}
|
||||
}
|
||||
|
||||
samplingInterval = (uint16_t)MINIMUM_SAMPLE_DELAY + (uint16_t)ANALOG_SAMPLE_DELAY * (1+analogreportnums);
|
||||
|
||||
currentMillis = millis();
|
||||
if (currentMillis - previousMillis > samplingInterval) {
|
||||
previousMillis += samplingInterval;
|
||||
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
|
||||
|
||||
for(pin=0; pin<TOTAL_PINS; pin++) {
|
||||
// FIRMATADEBUG.print("pin #"); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(" config = "); FIRMATADEBUG.println(pinConfig[pin]);
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(pin) && (pinConfig[pin] == ANALOG)) {
|
||||
analogPin = BLE_Firmata.PIN_TO_ANALOG(pin);
|
||||
|
||||
if (analogInputsToReport & (1 << analogPin)) {
|
||||
int currentRead = analogRead(analogPin);
|
||||
|
||||
if ((lastAnalogReads[analogPin] == -1) || (lastAnalogReads[analogPin] != currentRead)) {
|
||||
//FIRMATADEBUG.print(F("Analog")); FIRMATADEBUG.print(analogPin); FIRMATADEBUG.print(F(" = ")); FIRMATADEBUG.println(currentRead);
|
||||
BLE_Firmata.sendAnalog(analogPin, currentRead);
|
||||
lastAnalogReads[analogPin] = currentRead;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// report i2c data for all device with read continuous mode enabled
|
||||
if (queryIndex > -1) {
|
||||
for (byte i = 0; i < queryIndex + 1; i++) {
|
||||
readAndReportData(query[i].addr, query[i].reg, query[i].bytes);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,9 @@
|
||||
|
||||
// Connect CLK/MISO/MOSI to hardware SPI
|
||||
// e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11
|
||||
#define ADAFRUITBLE_REQ 10
|
||||
#define ADAFRUITBLE_RST 9
|
||||
#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on Uno thats #2 or #3
|
||||
// so we have digital 3-8 and analog 0-6 for use!
|
||||
|
||||
|
||||
@@ -0,0 +1,811 @@
|
||||
#include <Servo.h>
|
||||
#include <Wire.h>
|
||||
#include <SPI.h>
|
||||
#include <Adafruit_BLE_Firmata.h>
|
||||
#include "Adafruit_BLE_UART.h"
|
||||
|
||||
// Change this to whatever is the Serial console you want, either Serial or SerialUSB
|
||||
#define FIRMATADEBUG Serial
|
||||
// Pause for Serial console before beginning?
|
||||
#define WAITFORSERIAL true
|
||||
// Print all BLE interactions?
|
||||
#define VERBOSE_MODE false
|
||||
// Pullups on all input pins?
|
||||
#define AUTO_INPUT_PULLUPS true
|
||||
|
||||
|
||||
/************************ CONFIGURATION SECTION ***********************************/
|
||||
/*
|
||||
Don't forget to also change the BluefruitConfig.h for the SPI connection
|
||||
and pinout you are using!
|
||||
|
||||
Then below, you can edit the list of pins that are available. Remove any pins
|
||||
that are used for accessories or for talking to the BLE module!
|
||||
*/
|
||||
|
||||
/************** For UNO + nRF8001 SPI breakout ************/
|
||||
uint8_t boards_digitaliopins[] = {3, 4, 5, 6, 7, 8, A0, A1, A2, A3, A4, A5};
|
||||
|
||||
|
||||
|
||||
#if defined(__AVR_ATmega328P__)
|
||||
// Standard setup for UNO, no need to tweak
|
||||
uint8_t boards_analogiopins[] = {A0, A1, A2, A3, A4, A5}; // A0 == digital 14, etc
|
||||
uint8_t boards_pwmpins[] = {3, 5, 6, 9, 10, 11};
|
||||
uint8_t boards_servopins[] = {9, 10};
|
||||
uint8_t boards_i2cpins[] = {SDA, SCL};
|
||||
#elif defined(__AVR_ATmega32U4__)
|
||||
uint8_t boards_analogiopins[] = {A0, A1, A2, A3, A4, A5}; // A0 == digital 14, etc
|
||||
uint8_t boards_pwmpins[] = {3, 5, 6, 9, 10, 11, 13};
|
||||
uint8_t boards_servopins[] = {9, 10};
|
||||
uint8_t boards_i2cpins[] = {SDA, SCL};
|
||||
#elif defined(__SAMD21G18A__)
|
||||
#define SDA PIN_WIRE_SDA
|
||||
#define SCL PIN_WIRE_SCL
|
||||
uint8_t boards_analogiopins[] = {PIN_A0, PIN_A1, PIN_A2, PIN_A3, PIN_A4, PIN_A5,PIN_A6, PIN_A7}; // A0 == digital 14, etc
|
||||
uint8_t boards_pwmpins[] = {3,4,5,6,8,10,11,12,A0,A1,A2,A3,A4,A5};
|
||||
uint8_t boards_servopins[] = {9, 10};
|
||||
uint8_t boards_i2cpins[] = {SDA, SCL};
|
||||
#define NUM_DIGITAL_PINS 26
|
||||
#endif
|
||||
|
||||
|
||||
#define TOTAL_PINS NUM_DIGITAL_PINS /* highest number in boards_digitaliopins MEMEFIXME:automate */
|
||||
#define TOTAL_PORTS ((TOTAL_PINS + 7) / 8)
|
||||
|
||||
|
||||
/***********************************************************/
|
||||
|
||||
#include "Adafruit_BLE_Firmata_Boards.h"
|
||||
#include "BluefruitConfig.h"
|
||||
|
||||
// Create the bluetooth breakout instance, set the pins in the BluefruitConfig.h file!
|
||||
Adafruit_BLE_UART bluefruit = Adafruit_BLE_UART(ADAFRUITBLE_REQ, ADAFRUITBLE_RDY, ADAFRUITBLE_RST);
|
||||
|
||||
// our current connection status
|
||||
aci_evt_opcode_t lastBTLEstatus, BTLEstatus;
|
||||
|
||||
// make one instance for the user to use
|
||||
Adafruit_BLE_FirmataClass BLE_Firmata = Adafruit_BLE_FirmataClass(bluefruit);
|
||||
|
||||
// A small helper
|
||||
void error(const __FlashStringHelper*err) {
|
||||
FIRMATADEBUG.println(err);
|
||||
while (1);
|
||||
}
|
||||
|
||||
/*==============================================================================
|
||||
* GLOBAL VARIABLES
|
||||
*============================================================================*/
|
||||
|
||||
/* analog inputs */
|
||||
int analogInputsToReport = 0; // bitwise array to store pin reporting
|
||||
int lastAnalogReads[NUM_ANALOG_INPUTS];
|
||||
|
||||
/* digital input ports */
|
||||
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
|
||||
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
|
||||
|
||||
/* pins configuration */
|
||||
byte pinConfig[TOTAL_PINS]; // configuration of every pin
|
||||
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
|
||||
int pinState[TOTAL_PINS]; // any value that has been written
|
||||
|
||||
/* timer variables */
|
||||
unsigned long currentMillis; // store the current value from millis()
|
||||
unsigned long previousMillis; // for comparison with currentMillis
|
||||
int samplingInterval = 200; // how often to run the main loop (in ms)
|
||||
#define MINIMUM_SAMPLE_DELAY 150
|
||||
#define ANALOG_SAMPLE_DELAY 50
|
||||
|
||||
|
||||
/* i2c data */
|
||||
struct i2c_device_info {
|
||||
byte addr;
|
||||
byte reg;
|
||||
byte bytes;
|
||||
};
|
||||
|
||||
/* for i2c read continuous more */
|
||||
i2c_device_info query[MAX_QUERIES];
|
||||
|
||||
byte i2cRxData[32];
|
||||
boolean isI2CEnabled = false;
|
||||
signed char queryIndex = -1;
|
||||
unsigned int i2cReadDelayTime = 0; // default delay time between i2c read request and Wire.requestFrom()
|
||||
|
||||
Servo servos[MAX_SERVOS];
|
||||
/*==============================================================================
|
||||
* FUNCTIONS
|
||||
*============================================================================*/
|
||||
|
||||
void readAndReportData(byte address, int theRegister, byte numBytes) {
|
||||
// allow I2C requests that don't require a register read
|
||||
// for example, some devices using an interrupt pin to signify new data available
|
||||
// do not always require the register read so upon interrupt you call Wire.requestFrom()
|
||||
if (theRegister != REGISTER_NOT_SPECIFIED) {
|
||||
Wire.beginTransmission(address);
|
||||
#if ARDUINO >= 100
|
||||
Wire.write((byte)theRegister);
|
||||
#else
|
||||
Wire.send((byte)theRegister);
|
||||
#endif
|
||||
Wire.endTransmission();
|
||||
delayMicroseconds(i2cReadDelayTime); // delay is necessary for some devices such as WiiNunchuck
|
||||
} else {
|
||||
theRegister = 0; // fill the register with a dummy value
|
||||
}
|
||||
|
||||
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
|
||||
|
||||
// check to be sure correct number of bytes were returned by slave
|
||||
if(numBytes == Wire.available()) {
|
||||
i2cRxData[0] = address;
|
||||
i2cRxData[1] = theRegister;
|
||||
for (int i = 0; i < numBytes; i++) {
|
||||
#if ARDUINO >= 100
|
||||
i2cRxData[2 + i] = Wire.read();
|
||||
#else
|
||||
i2cRxData[2 + i] = Wire.receive();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else {
|
||||
if(numBytes > Wire.available()) {
|
||||
BLE_Firmata.sendString("I2C Read Error: Too many bytes received");
|
||||
} else {
|
||||
BLE_Firmata.sendString("I2C Read Error: Too few bytes received");
|
||||
}
|
||||
}
|
||||
|
||||
// send slave address, register and received bytes
|
||||
BLE_Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
|
||||
}
|
||||
|
||||
void outputPort(byte portNumber, byte portValue, byte forceSend)
|
||||
{
|
||||
// pins not configured as INPUT are cleared to zeros
|
||||
portValue = portValue & portConfigInputs[portNumber];
|
||||
// only send if the value is different than previously sent
|
||||
if(forceSend || previousPINs[portNumber] != portValue) {
|
||||
//FIRMATADEBUG.print(F("Sending update for port ")); FIRMATADEBUG.print(portNumber); FIRMATADEBUG.print(" = 0x"); FIRMATADEBUG.println(portValue, HEX);
|
||||
BLE_Firmata.sendDigitalPort(portNumber, portValue);
|
||||
previousPINs[portNumber] = portValue;
|
||||
}
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------------------------
|
||||
* check all the active digital inputs for change of state, then add any events
|
||||
* to the Serial output queue using () */
|
||||
void checkDigitalInputs(boolean forceSend = false)
|
||||
{
|
||||
/* Using non-looping code allows constants to be given to readPort().
|
||||
* The compiler will apply substantial optimizations if the inputs
|
||||
* to readPort() are compile-time constants. */
|
||||
for (uint8_t i=0; i<TOTAL_PORTS; i++) {
|
||||
if (reportPINs[i]) {
|
||||
// FIRMATADEBUG.print("Reporting on port "); FIRMATADEBUG.print(i); FIRMATADEBUG.print(" mask 0x"); FIRMATADEBUG.println(portConfigInputs[i], HEX);
|
||||
uint8_t x = BLE_Firmata.readPort(i, portConfigInputs[i]);
|
||||
// FIRMATADEBUG.print("Read 0x"); FIRMATADEBUG.println(x, HEX);
|
||||
outputPort(i, x, forceSend);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/* sets the pin mode to the correct state and sets the relevant bits in the
|
||||
* two bit-arrays that track Digital I/O and PWM status
|
||||
*/
|
||||
void setPinModeCallback(byte pin, int mode)
|
||||
{
|
||||
//FIRMATADEBUG.print("Setting pin #"); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(" to "); FIRMATADEBUG.println(mode);
|
||||
if ((pinConfig[pin] == I2C) && (isI2CEnabled) && (mode != I2C)) {
|
||||
// disable i2c so pins can be used for other functions
|
||||
// the following if statements should reconfigure the pins properly
|
||||
disableI2CPins();
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin) && mode != SERVO && servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached()) {
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].detach();
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
|
||||
reportAnalogCallback(BLE_Firmata.PIN_TO_ANALOG(pin), mode == ANALOG ? 1 : 0); // turn on/off reporting
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
if (mode == INPUT) {
|
||||
portConfigInputs[pin/8] |= (1 << (pin & 7));
|
||||
} else {
|
||||
portConfigInputs[pin/8] &= ~(1 << (pin & 7));
|
||||
}
|
||||
// FIRMATADEBUG.print(F("Setting pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(F(" port config mask to = 0x"));
|
||||
// FIRMATADEBUG.println(portConfigInputs[pin/8], HEX);
|
||||
}
|
||||
pinState[pin] = 0;
|
||||
switch(mode) {
|
||||
case ANALOG:
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
|
||||
//FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to analog"));
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT); // disable output driver
|
||||
}
|
||||
pinConfig[pin] = ANALOG;
|
||||
lastAnalogReads[BLE_Firmata.PIN_TO_ANALOG(pin)] = -1;
|
||||
}
|
||||
break;
|
||||
case INPUT:
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
//FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to input"));
|
||||
|
||||
if (AUTO_INPUT_PULLUPS) {
|
||||
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT_PULLUP); // disable output driver
|
||||
} else {
|
||||
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), INPUT); // disable output driver
|
||||
}
|
||||
pinConfig[pin] = INPUT;
|
||||
|
||||
// force sending state immediately
|
||||
//delay(10);
|
||||
//checkDigitalInputs(true);
|
||||
}
|
||||
break;
|
||||
case OUTPUT:
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
//FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to output"));
|
||||
digitalWrite(BLE_Firmata.PIN_TO_DIGITAL(pin), LOW); // disable PWM
|
||||
pinMode(BLE_Firmata.PIN_TO_DIGITAL(pin), OUTPUT);
|
||||
pinConfig[pin] = OUTPUT;
|
||||
}
|
||||
break;
|
||||
case PWM:
|
||||
if (BLE_Firmata.IS_PIN_PWM(pin)) {
|
||||
//FIRMATADEBUG.print(F("Set pin #")); FIRMATADEBUG.print(pin); FIRMATADEBUG.println(F(" to PWM"));
|
||||
pinMode(BLE_Firmata.PIN_TO_PWM(pin), OUTPUT);
|
||||
analogWrite(BLE_Firmata.PIN_TO_PWM(pin), 0);
|
||||
pinConfig[pin] = PWM;
|
||||
}
|
||||
break;
|
||||
case SERVO:
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
|
||||
pinConfig[pin] = SERVO;
|
||||
if (!servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached()) {
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].attach(BLE_Firmata.PIN_TO_DIGITAL(pin));
|
||||
}
|
||||
}
|
||||
break;
|
||||
case I2C:
|
||||
if (BLE_Firmata.IS_PIN_I2C(pin)) {
|
||||
// mark the pin as i2c
|
||||
// the user must call I2C_CONFIG to enable I2C for a device
|
||||
pinConfig[pin] = I2C;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
FIRMATADEBUG.print(F("Unknown pin mode")); // TODO: put error msgs in EEPROM
|
||||
}
|
||||
// TODO: save status to EEPROM here, if changed
|
||||
}
|
||||
|
||||
void analogWriteCallback(byte pin, int value)
|
||||
{
|
||||
if (pin < TOTAL_PINS) {
|
||||
switch(pinConfig[pin]) {
|
||||
case SERVO:
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin))
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].write(value);
|
||||
pinState[pin] = value;
|
||||
break;
|
||||
case PWM:
|
||||
if (BLE_Firmata.IS_PIN_PWM(pin))
|
||||
analogWrite(BLE_Firmata.PIN_TO_PWM(pin), value);
|
||||
//FIRMATADEBUG.print("pwm("); FIRMATADEBUG.print(BLE_Firmata.PIN_TO_PWM(pin)); FIRMATADEBUG.print(","); FIRMATADEBUG.print(value); FIRMATADEBUG.println(")");
|
||||
pinState[pin] = value;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void digitalWriteCallback(byte port, int value)
|
||||
{
|
||||
//FIRMATADEBUG.print("DWCx"); FIRMATADEBUG.print(port, HEX); FIRMATADEBUG.print(" "); FIRMATADEBUG.println(value);
|
||||
byte pin, lastPin, mask=1, pinWriteMask=0;
|
||||
|
||||
if (port < TOTAL_PORTS) {
|
||||
// create a mask of the pins on this port that are writable.
|
||||
lastPin = port*8+8;
|
||||
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
|
||||
for (pin=port*8; pin < lastPin; pin++) {
|
||||
// do not disturb non-digital pins (eg, Rx & Tx)
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
// only write to OUTPUT
|
||||
// do not touch pins in PWM, ANALOG, SERVO or other modes
|
||||
if (pinConfig[pin] == OUTPUT) {
|
||||
pinWriteMask |= mask;
|
||||
pinState[pin] = ((byte)value & mask) ? 1 : 0;
|
||||
}
|
||||
}
|
||||
mask = mask << 1;
|
||||
}
|
||||
//FIRMATADEBUG.print(F("Write digital port #")); FIRMATADEBUG.print(port);
|
||||
//FIRMATADEBUG.print(F(" = 0x")); FIRMATADEBUG.print(value, HEX);
|
||||
//FIRMATADEBUG.print(F(" mask = 0x")); FIRMATADEBUG.println(pinWriteMask, HEX);
|
||||
BLE_Firmata.writePort(port, (byte)value, pinWriteMask);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
|
||||
*/
|
||||
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
|
||||
//}
|
||||
void reportAnalogCallback(byte analogPin, int value)
|
||||
{
|
||||
if (analogPin < BLE_Firmata._num_analogiopins) {
|
||||
if(value == 0) {
|
||||
analogInputsToReport = analogInputsToReport &~ (1 << analogPin);
|
||||
//FIRMATADEBUG.print(F("Stop reporting analog pin #")); FIRMATADEBUG.println(analogPin);
|
||||
} else {
|
||||
analogInputsToReport |= (1 << analogPin);
|
||||
//FIRMATADEBUG.print(F("Will report analog pin #")); FIRMATADEBUG.println(analogPin);
|
||||
}
|
||||
}
|
||||
// TODO: save status to EEPROM here, if changed
|
||||
}
|
||||
|
||||
void reportDigitalCallback(byte port, int value)
|
||||
{
|
||||
if (port < TOTAL_PORTS) {
|
||||
//FIRMATADEBUG.print(F("Will report 0x")); FIRMATADEBUG.print(value, HEX); FIRMATADEBUG.print(F(" digital mask on port ")); FIRMATADEBUG.println(port);
|
||||
reportPINs[port] = (byte)value;
|
||||
}
|
||||
// do not disable analog reporting on these 8 pins, to allow some
|
||||
// pins used for digital, others analog. Instead, allow both types
|
||||
// of reporting to be enabled, but check if the pin is configured
|
||||
// as analog when sampling the analog inputs. Likewise, while
|
||||
// scanning digital pins, portConfigInputs will mask off values from any
|
||||
// pins configured as analog
|
||||
}
|
||||
|
||||
/*==============================================================================
|
||||
* SYSEX-BASED commands
|
||||
*============================================================================*/
|
||||
|
||||
void sysexCallback(byte command, byte argc, byte *argv)
|
||||
{
|
||||
byte mode;
|
||||
byte slaveAddress;
|
||||
byte slaveRegister;
|
||||
byte data;
|
||||
unsigned int delayTime;
|
||||
|
||||
FIRMATADEBUG.println("********** Sysex callback");
|
||||
|
||||
switch(command) {
|
||||
case I2C_REQUEST:
|
||||
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
|
||||
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
|
||||
//BLE_Firmata.sendString("10-bit addressing mode is not yet supported");
|
||||
//FIRMATADEBUG.println(F("10-bit addressing mode is not yet supported"));
|
||||
return;
|
||||
}
|
||||
else {
|
||||
slaveAddress = argv[0];
|
||||
}
|
||||
|
||||
switch(mode) {
|
||||
case I2C_WRITE:
|
||||
Wire.beginTransmission(slaveAddress);
|
||||
for (byte i = 2; i < argc; i += 2) {
|
||||
data = argv[i] + (argv[i + 1] << 7);
|
||||
#if ARDUINO >= 100
|
||||
Wire.write(data);
|
||||
#else
|
||||
Wire.send(data);
|
||||
#endif
|
||||
}
|
||||
Wire.endTransmission();
|
||||
delayMicroseconds(70);
|
||||
break;
|
||||
case I2C_READ:
|
||||
if (argc == 6) {
|
||||
// a slave register is specified
|
||||
slaveRegister = argv[2] + (argv[3] << 7);
|
||||
data = argv[4] + (argv[5] << 7); // bytes to read
|
||||
readAndReportData(slaveAddress, (int)slaveRegister, data);
|
||||
}
|
||||
else {
|
||||
// a slave register is NOT specified
|
||||
data = argv[2] + (argv[3] << 7); // bytes to read
|
||||
readAndReportData(slaveAddress, (int)REGISTER_NOT_SPECIFIED, data);
|
||||
}
|
||||
break;
|
||||
case I2C_READ_CONTINUOUSLY:
|
||||
if ((queryIndex + 1) >= MAX_QUERIES) {
|
||||
// too many queries, just ignore
|
||||
BLE_Firmata.sendString("too many queries");
|
||||
break;
|
||||
}
|
||||
queryIndex++;
|
||||
query[queryIndex].addr = slaveAddress;
|
||||
query[queryIndex].reg = argv[2] + (argv[3] << 7);
|
||||
query[queryIndex].bytes = argv[4] + (argv[5] << 7);
|
||||
break;
|
||||
case I2C_STOP_READING:
|
||||
byte queryIndexToSkip;
|
||||
// if read continuous mode is enabled for only 1 i2c device, disable
|
||||
// read continuous reporting for that device
|
||||
if (queryIndex <= 0) {
|
||||
queryIndex = -1;
|
||||
} else {
|
||||
// if read continuous mode is enabled for multiple devices,
|
||||
// determine which device to stop reading and remove it's data from
|
||||
// the array, shifiting other array data to fill the space
|
||||
for (byte i = 0; i < queryIndex + 1; i++) {
|
||||
if (query[i].addr = slaveAddress) {
|
||||
queryIndexToSkip = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (byte i = queryIndexToSkip; i<queryIndex + 1; i++) {
|
||||
if (i < MAX_QUERIES) {
|
||||
query[i].addr = query[i+1].addr;
|
||||
query[i].reg = query[i+1].addr;
|
||||
query[i].bytes = query[i+1].bytes;
|
||||
}
|
||||
}
|
||||
queryIndex--;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case I2C_CONFIG:
|
||||
delayTime = (argv[0] + (argv[1] << 7));
|
||||
|
||||
if(delayTime > 0) {
|
||||
i2cReadDelayTime = delayTime;
|
||||
}
|
||||
|
||||
if (!isI2CEnabled) {
|
||||
enableI2CPins();
|
||||
}
|
||||
|
||||
break;
|
||||
case SERVO_CONFIG:
|
||||
if(argc > 4) {
|
||||
// these vars are here for clarity, they'll optimized away by the compiler
|
||||
byte pin = argv[0];
|
||||
int minPulse = argv[1] + (argv[2] << 7);
|
||||
int maxPulse = argv[3] + (argv[4] << 7);
|
||||
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
|
||||
if (servos[BLE_Firmata.PIN_TO_SERVO(pin)].attached())
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].detach();
|
||||
servos[BLE_Firmata.PIN_TO_SERVO(pin)].attach(BLE_Firmata.PIN_TO_DIGITAL(pin), minPulse, maxPulse);
|
||||
setPinModeCallback(pin, SERVO);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case SAMPLING_INTERVAL:
|
||||
if (argc > 1) {
|
||||
samplingInterval = argv[0] + (argv[1] << 7);
|
||||
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
|
||||
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
|
||||
}
|
||||
} else {
|
||||
//BLE_Firmata.sendString("Not enough data");
|
||||
}
|
||||
break;
|
||||
case EXTENDED_ANALOG:
|
||||
if (argc > 1) {
|
||||
int val = argv[1];
|
||||
if (argc > 2) val |= (argv[2] << 7);
|
||||
if (argc > 3) val |= (argv[3] << 14);
|
||||
analogWriteCallback(argv[0], val);
|
||||
}
|
||||
break;
|
||||
case CAPABILITY_QUERY:
|
||||
bluefruit.write(START_SYSEX);
|
||||
bluefruit.write(CAPABILITY_RESPONSE);
|
||||
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(START_SYSEX, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(CAPABILITY_RESPONSE, HEX);
|
||||
delay(10);
|
||||
for (byte pin=0; pin < TOTAL_PINS; pin++) {
|
||||
//FIRMATADEBUG.print("\t#"); FIRMATADEBUG.println(pin);
|
||||
if (BLE_Firmata.IS_PIN_DIGITAL(pin)) {
|
||||
bluefruit.write((byte)INPUT);
|
||||
bluefruit.write(1);
|
||||
bluefruit.write((byte)OUTPUT);
|
||||
bluefruit.write(1);
|
||||
|
||||
/*
|
||||
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(INPUT, HEX);
|
||||
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(1, HEX);
|
||||
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(OUTPUT, HEX);
|
||||
FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(1, HEX);
|
||||
*/
|
||||
delay(20);
|
||||
} else {
|
||||
bluefruit.write(127);
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(127, HEX);
|
||||
delay(20);
|
||||
continue;
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(pin)) {
|
||||
bluefruit.write(ANALOG);
|
||||
bluefruit.write(10);
|
||||
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(ANALOG, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(10, HEX);
|
||||
delay(20);
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_PWM(pin)) {
|
||||
bluefruit.write(PWM);
|
||||
bluefruit.write(8);
|
||||
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(PWM, HEX); FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(8, HEX);
|
||||
delay(20);
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_SERVO(pin)) {
|
||||
bluefruit.write(SERVO);
|
||||
bluefruit.write(14);
|
||||
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.print(SERVO, HEX);FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(14, HEX);
|
||||
delay(20);
|
||||
}
|
||||
if (BLE_Firmata.IS_PIN_I2C(pin)) {
|
||||
bluefruit.write(I2C);
|
||||
bluefruit.write(1); // to do: determine appropriate value
|
||||
delay(20);
|
||||
}
|
||||
bluefruit.write(127);
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(127, HEX);
|
||||
}
|
||||
bluefruit.write(END_SYSEX);
|
||||
//FIRMATADEBUG.print(" 0x"); FIRMATADEBUG.println(END_SYSEX, HEX);
|
||||
break;
|
||||
case PIN_STATE_QUERY:
|
||||
if (argc > 0) {
|
||||
byte pin=argv[0];
|
||||
bluefruit.write(START_SYSEX);
|
||||
bluefruit.write(PIN_STATE_RESPONSE);
|
||||
bluefruit.write(pin);
|
||||
if (pin < TOTAL_PINS) {
|
||||
bluefruit.write((byte)pinConfig[pin]);
|
||||
bluefruit.write((byte)pinState[pin] & 0x7F);
|
||||
if (pinState[pin] & 0xFF80) bluefruit.write((byte)(pinState[pin] >> 7) & 0x7F);
|
||||
if (pinState[pin] & 0xC000) bluefruit.write((byte)(pinState[pin] >> 14) & 0x7F);
|
||||
}
|
||||
bluefruit.write(END_SYSEX);
|
||||
}
|
||||
break;
|
||||
case ANALOG_MAPPING_QUERY:
|
||||
//FIRMATADEBUG.println("Analog mapping query");
|
||||
bluefruit.write(START_SYSEX);
|
||||
bluefruit.write(ANALOG_MAPPING_RESPONSE);
|
||||
for (byte pin=0; pin < TOTAL_PINS; pin++) {
|
||||
bluefruit.write(BLE_Firmata.IS_PIN_ANALOG(pin) ? BLE_Firmata.PIN_TO_ANALOG(pin) : 127);
|
||||
}
|
||||
bluefruit.write(END_SYSEX);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void enableI2CPins()
|
||||
{
|
||||
byte i;
|
||||
// is there a faster way to do this? would probaby require importing
|
||||
// Arduino.h to get SCL and SDA pins
|
||||
for (i=0; i < TOTAL_PINS; i++) {
|
||||
if(BLE_Firmata.IS_PIN_I2C(i)) {
|
||||
// mark pins as i2c so they are ignore in non i2c data requests
|
||||
setPinModeCallback(i, I2C);
|
||||
}
|
||||
}
|
||||
|
||||
isI2CEnabled = true;
|
||||
|
||||
// is there enough time before the first I2C request to call this here?
|
||||
Wire.begin();
|
||||
}
|
||||
|
||||
/* disable the i2c pins so they can be used for other functions */
|
||||
void disableI2CPins() {
|
||||
isI2CEnabled = false;
|
||||
// disable read continuous mode for all devices
|
||||
queryIndex = -1;
|
||||
// uncomment the following if or when the end() method is added to Wire library
|
||||
// Wire.end();
|
||||
}
|
||||
|
||||
/*==============================================================================
|
||||
* SETUP()
|
||||
*============================================================================*/
|
||||
|
||||
void systemResetCallback()
|
||||
{
|
||||
// initialize a defalt state
|
||||
FIRMATADEBUG.println(F("***RESET***"));
|
||||
// TODO: option to load config from EEPROM instead of default
|
||||
if (isI2CEnabled) {
|
||||
disableI2CPins();
|
||||
}
|
||||
for (byte i=0; i < TOTAL_PORTS; i++) {
|
||||
reportPINs[i] = false; // by default, reporting off
|
||||
portConfigInputs[i] = 0; // until activated
|
||||
previousPINs[i] = 0;
|
||||
}
|
||||
// pins with analog capability default to analog input
|
||||
// otherwise, pins default to digital output
|
||||
for (byte i=0; i < TOTAL_PINS; i++) {
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(i)) {
|
||||
// turns off pullup, configures everything
|
||||
setPinModeCallback(i, ANALOG);
|
||||
} else {
|
||||
// sets the output to 0, configures portConfigInputs
|
||||
setPinModeCallback(i, INPUT);
|
||||
}
|
||||
}
|
||||
// by default, do not report any analog inputs
|
||||
analogInputsToReport = 0;
|
||||
|
||||
/* send digital inputs to set the initial state on the host computer,
|
||||
* since once in the loop(), this firmware will only send on change */
|
||||
/*
|
||||
TODO: this can never execute, since no pins default to digital input
|
||||
but it will be needed when/if we support EEPROM stored config
|
||||
for (byte i=0; i < TOTAL_PORTS; i++) {
|
||||
outputPort(i, readPort(i, portConfigInputs[i]), true);
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
if (WAITFORSERIAL) {
|
||||
while (!FIRMATADEBUG) delay(1);
|
||||
}
|
||||
|
||||
FIRMATADEBUG.begin(9600);
|
||||
FIRMATADEBUG.println(F("Adafruit Bluefruit nRF8001 Firmata test"));
|
||||
|
||||
FIRMATADEBUG.print("Total pins: "); FIRMATADEBUG.println(NUM_DIGITAL_PINS);
|
||||
FIRMATADEBUG.print("Analog pins: "); FIRMATADEBUG.println(sizeof(boards_analogiopins));
|
||||
//for (uint8_t i=0; i<sizeof(boards_analogiopins); i++) {
|
||||
// FIRMATADEBUG.println(boards_analogiopins[i]);
|
||||
//}
|
||||
|
||||
BLE_Firmata.setUsablePins(boards_digitaliopins, sizeof(boards_digitaliopins),
|
||||
boards_analogiopins, sizeof(boards_analogiopins),
|
||||
boards_pwmpins, sizeof(boards_pwmpins),
|
||||
boards_servopins, sizeof(boards_servopins), SDA, SCL);
|
||||
|
||||
/* Initialise the module */
|
||||
FIRMATADEBUG.print(F("Init nRF8001: "));
|
||||
if (! bluefruit.begin()) {
|
||||
error(F("Failed"));
|
||||
}
|
||||
bluefruit.setDeviceName("ADA_BLE");
|
||||
FIRMATADEBUG.println(F("Done"));
|
||||
BTLEstatus = lastBTLEstatus = ACI_EVT_DISCONNECTED;
|
||||
}
|
||||
|
||||
void firmataInit() {
|
||||
FIRMATADEBUG.println(F("Init firmata"));
|
||||
//BLE_Firmata.setFirmwareVersion(FIRMATA_MAJOR_VERSION, FIRMATA_MINOR_VERSION);
|
||||
//FIRMATADEBUG.println(F("firmata analog"));
|
||||
BLE_Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
|
||||
//FIRMATADEBUG.println(F("firmata digital"));
|
||||
BLE_Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
|
||||
//FIRMATADEBUG.println(F("firmata analog report"));
|
||||
BLE_Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
|
||||
//FIRMATADEBUG.println(F("firmata digital report"));
|
||||
BLE_Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
|
||||
//FIRMATADEBUG.println(F("firmata pinmode"));
|
||||
BLE_Firmata.attach(SET_PIN_MODE, setPinModeCallback);
|
||||
//FIRMATADEBUG.println(F("firmata sysex"));
|
||||
BLE_Firmata.attach(START_SYSEX, sysexCallback);
|
||||
//FIRMATADEBUG.println(F("firmata reset"));
|
||||
BLE_Firmata.attach(SYSTEM_RESET, systemResetCallback);
|
||||
|
||||
FIRMATADEBUG.println(F("Begin firmata"));
|
||||
BLE_Firmata.begin();
|
||||
systemResetCallback(); // reset to default config
|
||||
}
|
||||
/*==============================================================================
|
||||
* LOOP()
|
||||
*============================================================================*/
|
||||
|
||||
void loop()
|
||||
{
|
||||
// Check the BTLE link, how're we doing?
|
||||
bluefruit.pollACI();
|
||||
// Link status check
|
||||
BTLEstatus = bluefruit.getState();
|
||||
|
||||
// Check if something has changed
|
||||
if (BTLEstatus != lastBTLEstatus) {
|
||||
// print it out!
|
||||
if (BTLEstatus == ACI_EVT_DEVICE_STARTED) {
|
||||
FIRMATADEBUG.println(F("* Advertising"));
|
||||
}
|
||||
if (BTLEstatus == ACI_EVT_CONNECTED) {
|
||||
FIRMATADEBUG.println(F("* Connected!"));
|
||||
// initialize Firmata cleanly
|
||||
firmataInit();
|
||||
}
|
||||
if (BTLEstatus == ACI_EVT_DISCONNECTED) {
|
||||
FIRMATADEBUG.println(F("* Disconnected"));
|
||||
}
|
||||
// OK set the last status change to this one
|
||||
lastBTLEstatus = BTLEstatus;
|
||||
}
|
||||
// if not connected... bail
|
||||
if (BTLEstatus != ACI_EVT_CONNECTED) {
|
||||
delay(100);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// For debugging, see if there's data on the serial console, we would forwad it to BTLE
|
||||
if (FIRMATADEBUG.available()) {
|
||||
bluefruit.write(FIRMATADEBUG.read());
|
||||
}
|
||||
|
||||
// Onto the Firmata main loop
|
||||
|
||||
byte pin, analogPin;
|
||||
|
||||
/* DIGITALREAD - as fast as possible, check for changes and output them to the
|
||||
* BTLE buffer using FIRMATADEBUG.print() */
|
||||
checkDigitalInputs();
|
||||
|
||||
/* SERIALREAD - processing incoming messagse as soon as possible, while still
|
||||
* checking digital inputs. */
|
||||
while(BLE_Firmata.available()) {
|
||||
//FIRMATADEBUG.println(F("*data available*"));
|
||||
BLE_Firmata.processInput();
|
||||
}
|
||||
/* SEND FTDI WRITE BUFFER - make sure that the FTDI buffer doesn't go over
|
||||
* 60 bytes. use a timer to sending an event character every 4 ms to
|
||||
* trigger the buffer to dump. */
|
||||
|
||||
// make the sampling interval longer if we have more analog inputs!
|
||||
uint8_t analogreportnums = 0;
|
||||
for(uint8_t a=0; a<8; a++) {
|
||||
if (analogInputsToReport & (1 << a)) {
|
||||
analogreportnums++;
|
||||
}
|
||||
}
|
||||
|
||||
samplingInterval = (uint16_t)MINIMUM_SAMPLE_DELAY + (uint16_t)ANALOG_SAMPLE_DELAY * (1+analogreportnums);
|
||||
|
||||
currentMillis = millis();
|
||||
if (currentMillis - previousMillis > samplingInterval) {
|
||||
previousMillis += samplingInterval;
|
||||
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
|
||||
|
||||
for(pin=0; pin<TOTAL_PINS; pin++) {
|
||||
// FIRMATADEBUG.print("pin #"); FIRMATADEBUG.print(pin); FIRMATADEBUG.print(" config = "); FIRMATADEBUG.println(pinConfig[pin]);
|
||||
if (BLE_Firmata.IS_PIN_ANALOG(pin) && (pinConfig[pin] == ANALOG)) {
|
||||
analogPin = BLE_Firmata.PIN_TO_ANALOG(pin);
|
||||
|
||||
if (analogInputsToReport & (1 << analogPin)) {
|
||||
int currentRead = analogRead(analogPin);
|
||||
|
||||
if ((lastAnalogReads[analogPin] == -1) || (lastAnalogReads[analogPin] != currentRead)) {
|
||||
//FIRMATADEBUG.print(F("Analog")); FIRMATADEBUG.print(analogPin); FIRMATADEBUG.print(F(" = ")); FIRMATADEBUG.println(currentRead);
|
||||
BLE_Firmata.sendAnalog(analogPin, currentRead);
|
||||
lastAnalogReads[analogPin] = currentRead;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// report i2c data for all device with read continuous mode enabled
|
||||
if (queryIndex > -1) {
|
||||
for (byte i = 0; i < queryIndex + 1; i++) {
|
||||
readAndReportData(query[i].addr, query[i].reg, query[i].bytes);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,458 @@
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
Version 2.1, February 1999
|
||||
|
||||
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
[This is the first released version of the Lesser GPL. It also counts
|
||||
as the successor of the GNU Library Public License, version 2, hence
|
||||
the version number 2.1.]
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
Licenses are intended to guarantee your freedom to share and change
|
||||
free software--to make sure the software is free for all its users.
|
||||
|
||||
This license, the Lesser General Public License, applies to some
|
||||
specially designated software packages--typically libraries--of the
|
||||
Free Software Foundation and other authors who decide to use it. You
|
||||
can use it too, but we suggest you first think carefully about whether
|
||||
this license or the ordinary General Public License is the better
|
||||
strategy to use in any particular case, based on the explanations below.
|
||||
|
||||
When we speak of free software, we are referring to freedom of use,
|
||||
not price. Our General Public Licenses are designed to make sure that
|
||||
you have the freedom to distribute copies of free software (and charge
|
||||
for this service if you wish); that you receive source code or can get
|
||||
it if you want it; that you can change the software and use pieces of
|
||||
it in new free programs; and that you are informed that you can do
|
||||
these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
distributors to deny you these rights or to ask you to surrender these
|
||||
rights. These restrictions translate to certain responsibilities for
|
||||
you if you distribute copies of the library or if you modify it.
|
||||
|
||||
For example, if you distribute copies of the library, whether gratis
|
||||
or for a fee, you must give the recipients all the rights that we gave
|
||||
you. You must make sure that they, too, receive or can get the source
|
||||
code. If you link other code with the library, you must provide
|
||||
complete object files to the recipients, so that they can relink them
|
||||
with the library after making changes to the library and recompiling
|
||||
it. And you must show them these terms so they know their rights.
|
||||
|
||||
We protect your rights with a two-step method: (1) we copyright the
|
||||
library, and (2) we offer you this license, which gives you legal
|
||||
permission to copy, distribute and/or modify the library.
|
||||
|
||||
To protect each distributor, we want to make it very clear that
|
||||
there is no warranty for the free library. Also, if the library is
|
||||
modified by someone else and passed on, the recipients should know
|
||||
that what they have is not the original version, so that the original
|
||||
author's reputation will not be affected by problems that might be
|
||||
introduced by others.
|
||||
|
||||
Finally, software patents pose a constant threat to the existence of
|
||||
any free program. We wish to make sure that a company cannot
|
||||
effectively restrict the users of a free program by obtaining a
|
||||
restrictive license from a patent holder. Therefore, we insist that
|
||||
any patent license obtained for a version of the library must be
|
||||
consistent with the full freedom of use specified in this license.
|
||||
|
||||
Most GNU software, including some libraries, is covered by the
|
||||
ordinary GNU General Public License. This license, the GNU Lesser
|
||||
General Public License, applies to certain designated libraries, and
|
||||
is quite different from the ordinary General Public License. We use
|
||||
this license for certain libraries in order to permit linking those
|
||||
libraries into non-free programs.
|
||||
|
||||
When a program is linked with a library, whether statically or using
|
||||
a shared library, the combination of the two is legally speaking a
|
||||
combined work, a derivative of the original library. The ordinary
|
||||
General Public License therefore permits such linking only if the
|
||||
entire combination fits its criteria of freedom. The Lesser General
|
||||
Public License permits more lax criteria for linking other code with
|
||||
the library.
|
||||
|
||||
We call this license the "Lesser" General Public License because it
|
||||
does Less to protect the user's freedom than the ordinary General
|
||||
Public License. It also provides other free software developers Less
|
||||
of an advantage over competing non-free programs. These disadvantages
|
||||
are the reason we use the ordinary General Public License for many
|
||||
libraries. However, the Lesser license provides advantages in certain
|
||||
special circumstances.
|
||||
|
||||
For example, on rare occasions, there may be a special need to
|
||||
encourage the widest possible use of a certain library, so that it becomes
|
||||
a de-facto standard. To achieve this, non-free programs must be
|
||||
allowed to use the library. A more frequent case is that a free
|
||||
library does the same job as widely used non-free libraries. In this
|
||||
case, there is little to gain by limiting the free library to free
|
||||
software only, so we use the Lesser General Public License.
|
||||
|
||||
In other cases, permission to use a particular library in non-free
|
||||
programs enables a greater number of people to use a large body of
|
||||
free software. For example, permission to use the GNU C Library in
|
||||
non-free programs enables many more people to use the whole GNU
|
||||
operating system, as well as its variant, the GNU/Linux operating
|
||||
system.
|
||||
|
||||
Although the Lesser General Public License is Less protective of the
|
||||
users' freedom, it does ensure that the user of a program that is
|
||||
linked with the Library has the freedom and the wherewithal to run
|
||||
that program using a modified version of the Library.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow. Pay close attention to the difference between a
|
||||
"work based on the library" and a "work that uses the library". The
|
||||
former contains code derived from the library, whereas the latter must
|
||||
be combined with the library in order to run.
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License Agreement applies to any software library or other
|
||||
program which contains a notice placed by the copyright holder or
|
||||
other authorized party saying it may be distributed under the terms of
|
||||
this Lesser General Public License (also called "this License").
|
||||
Each licensee is addressed as "you".
|
||||
|
||||
A "library" means a collection of software functions and/or data
|
||||
prepared so as to be conveniently linked with application programs
|
||||
(which use some of those functions and data) to form executables.
|
||||
|
||||
The "Library", below, refers to any such software library or work
|
||||
which has been distributed under these terms. A "work based on the
|
||||
Library" means either the Library or any derivative work under
|
||||
copyright law: that is to say, a work containing the Library or a
|
||||
portion of it, either verbatim or with modifications and/or translated
|
||||
straightforwardly into another language. (Hereinafter, translation is
|
||||
included without limitation in the term "modification".)
|
||||
|
||||
"Source code" for a work means the preferred form of the work for
|
||||
making modifications to it. For a library, complete source code means
|
||||
all the source code for all modules it contains, plus any associated
|
||||
interface definition files, plus the scripts used to control compilation
|
||||
and installation of the library.
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running a program using the Library is not restricted, and output from
|
||||
such a program is covered only if its contents constitute a work based
|
||||
on the Library (independent of the use of the Library in a tool for
|
||||
writing it). Whether that is true depends on what the Library does
|
||||
and what the program that uses the Library does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Library's
|
||||
complete source code as you receive it, in any medium, provided that
|
||||
you conspicuously and appropriately publish on each copy an
|
||||
appropriate copyright notice and disclaimer of warranty; keep intact
|
||||
all the notices that refer to this License and to the absence of any
|
||||
warranty; and distribute a copy of this License along with the
|
||||
Library.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy,
|
||||
and you may at your option offer warranty protection in exchange for a
|
||||
fee.
|
||||
|
||||
2. You may modify your copy or copies of the Library or any portion
|
||||
of it, thus forming a work based on the Library, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) The modified work must itself be a software library.
|
||||
|
||||
b) You must cause the files modified to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
c) You must cause the whole of the work to be licensed at no
|
||||
charge to all third parties under the terms of this License.
|
||||
|
||||
d) If a facility in the modified Library refers to a function or a
|
||||
table of data to be supplied by an application program that uses
|
||||
the facility, other than as an argument passed when the facility
|
||||
is invoked, then you must make a good faith effort to ensure that,
|
||||
in the event an application does not supply such function or
|
||||
table, the facility still operates, and performs whatever part of
|
||||
its purpose remains meaningful.
|
||||
|
||||
(For example, a function in a library to compute square roots has
|
||||
a purpose that is entirely well-defined independent of the
|
||||
application. Therefore, Subsection 2d requires that any
|
||||
application-supplied function or table used by this function must
|
||||
be optional: if the application does not supply it, the square
|
||||
root function must still compute square roots.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Library,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Library, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote
|
||||
it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Library.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Library
|
||||
with the Library (or with a work based on the Library) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may opt to apply the terms of the ordinary GNU General Public
|
||||
License instead of this License to a given copy of the Library. To do
|
||||
this, you must alter all the notices that refer to this License, so
|
||||
that they refer to the ordinary GNU General Public License, version 2,
|
||||
instead of to this License. (If a newer version than version 2 of the
|
||||
ordinary GNU General Public License has appeared, then you can specify
|
||||
that version instead if you wish.) Do not make any other change in
|
||||
these notices.
|
||||
|
||||
Once this change is made in a given copy, it is irreversible for
|
||||
that copy, so the ordinary GNU General Public License applies to all
|
||||
subsequent copies and derivative works made from that copy.
|
||||
|
||||
This option is useful when you wish to copy part of the code of
|
||||
the Library into a program that is not a library.
|
||||
|
||||
4. You may copy and distribute the Library (or a portion or
|
||||
derivative of it, under Section 2) in object code or executable form
|
||||
under the terms of Sections 1 and 2 above provided that you accompany
|
||||
it with the complete corresponding machine-readable source code, which
|
||||
must be distributed under the terms of Sections 1 and 2 above on a
|
||||
medium customarily used for software interchange.
|
||||
|
||||
If distribution of object code is made by offering access to copy
|
||||
from a designated place, then offering equivalent access to copy the
|
||||
source code from the same place satisfies the requirement to
|
||||
distribute the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
5. A program that contains no derivative of any portion of the
|
||||
Library, but is designed to work with the Library by being compiled or
|
||||
linked with it, is called a "work that uses the Library". Such a
|
||||
work, in isolation, is not a derivative work of the Library, and
|
||||
therefore falls outside the scope of this License.
|
||||
|
||||
However, linking a "work that uses the Library" with the Library
|
||||
creates an executable that is a derivative of the Library (because it
|
||||
contains portions of the Library), rather than a "work that uses the
|
||||
library". The executable is therefore covered by this License.
|
||||
Section 6 states terms for distribution of such executables.
|
||||
|
||||
When a "work that uses the Library" uses material from a header file
|
||||
that is part of the Library, the object code for the work may be a
|
||||
derivative work of the Library even though the source code is not.
|
||||
Whether this is true is especially significant if the work can be
|
||||
linked without the Library, or if the work is itself a library. The
|
||||
threshold for this to be true is not precisely defined by law.
|
||||
|
||||
If such an object file uses only numerical parameters, data
|
||||
structure layouts and accessors, and small macros and small inline
|
||||
functions (ten lines or less in length), then the use of the object
|
||||
file is unrestricted, regardless of whether it is legally a derivative
|
||||
work. (Executables containing this object code plus portions of the
|
||||
Library will still fall under Section 6.)
|
||||
|
||||
Otherwise, if the work is a derivative of the Library, you may
|
||||
distribute the object code for the work under the terms of Section 6.
|
||||
Any executables containing that work also fall under Section 6,
|
||||
whether or not they are linked directly with the Library itself.
|
||||
|
||||
6. As an exception to the Sections above, you may also combine or
|
||||
link a "work that uses the Library" with the Library to produce a
|
||||
work containing portions of the Library, and distribute that work
|
||||
under terms of your choice, provided that the terms permit
|
||||
modification of the work for the customer's own use and reverse
|
||||
engineering for debugging such modifications.
|
||||
|
||||
You must give prominent notice with each copy of the work that the
|
||||
Library is used in it and that the Library and its use are covered by
|
||||
this License. You must supply a copy of this License. If the work
|
||||
during execution displays copyright notices, you must include the
|
||||
copyright notice for the Library among them, as well as a reference
|
||||
directing the user to the copy of this License. Also, you must do one
|
||||
of these things:
|
||||
|
||||
a) Accompany the work with the complete corresponding
|
||||
machine-readable source code for the Library including whatever
|
||||
changes were used in the work (which must be distributed under
|
||||
Sections 1 and 2 above); and, if the work is an executable linked
|
||||
with the Library, with the complete machine-readable "work that
|
||||
uses the Library", as object code and/or source code, so that the
|
||||
user can modify the Library and then relink to produce a modified
|
||||
executable containing the modified Library. (It is understood
|
||||
that the user who changes the contents of definitions files in the
|
||||
Library will not necessarily be able to recompile the application
|
||||
to use the modified definitions.)
|
||||
|
||||
b) Use a suitable shared library mechanism for linking with the
|
||||
Library. A suitable mechanism is one that (1) uses at run time a
|
||||
copy of the library already present on the user's computer system,
|
||||
rather than copying library functions into the executable, and (2)
|
||||
will operate properly with a modified version of the library, if
|
||||
the user installs one, as long as the modified version is
|
||||
interface-compatible with the version that the work was made with.
|
||||
|
||||
c) Accompany the work with a written offer, valid for at
|
||||
least three years, to give the same user the materials
|
||||
specified in Subsection 6a, above, for a charge no more
|
||||
than the cost of performing this distribution.
|
||||
|
||||
d) If distribution of the work is made by offering access to copy
|
||||
from a designated place, offer equivalent access to copy the above
|
||||
specified materials from the same place.
|
||||
|
||||
e) Verify that the user has already received a copy of these
|
||||
materials or that you have already sent this user a copy.
|
||||
|
||||
For an executable, the required form of the "work that uses the
|
||||
Library" must include any data and utility programs needed for
|
||||
reproducing the executable from it. However, as a special exception,
|
||||
the materials to be distributed need not include anything that is
|
||||
normally distributed (in either source or binary form) with the major
|
||||
components (compiler, kernel, and so on) of the operating system on
|
||||
which the executable runs, unless that component itself accompanies
|
||||
the executable.
|
||||
|
||||
It may happen that this requirement contradicts the license
|
||||
restrictions of other proprietary libraries that do not normally
|
||||
accompany the operating system. Such a contradiction means you cannot
|
||||
use both them and the Library together in an executable that you
|
||||
distribute.
|
||||
|
||||
7. You may place library facilities that are a work based on the
|
||||
Library side-by-side in a single library together with other library
|
||||
facilities not covered by this License, and distribute such a combined
|
||||
library, provided that the separate distribution of the work based on
|
||||
the Library and of the other library facilities is otherwise
|
||||
permitted, and provided that you do these two things:
|
||||
|
||||
a) Accompany the combined library with a copy of the same work
|
||||
based on the Library, uncombined with any other library
|
||||
facilities. This must be distributed under the terms of the
|
||||
Sections above.
|
||||
|
||||
b) Give prominent notice with the combined library of the fact
|
||||
that part of it is a work based on the Library, and explaining
|
||||
where to find the accompanying uncombined form of the same work.
|
||||
|
||||
8. You may not copy, modify, sublicense, link with, or distribute
|
||||
the Library except as expressly provided under this License. Any
|
||||
attempt otherwise to copy, modify, sublicense, link with, or
|
||||
distribute the Library is void, and will automatically terminate your
|
||||
rights under this License. However, parties who have received copies,
|
||||
or rights, from you under this License will not have their licenses
|
||||
terminated so long as such parties remain in full compliance.
|
||||
|
||||
9. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Library or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Library (or any work based on the
|
||||
Library), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Library or works based on it.
|
||||
|
||||
10. Each time you redistribute the Library (or any work based on the
|
||||
Library), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute, link with or modify the Library
|
||||
subject to these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties with
|
||||
this License.
|
||||
|
||||
11. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Library at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Library by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Library.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under any
|
||||
particular circumstance, the balance of the section is intended to apply,
|
||||
and the section as a whole is intended to apply in other circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
12. If the distribution and/or use of the Library is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Library under this License may add
|
||||
an explicit geographical distribution limitation excluding those countries,
|
||||
so that distribution is permitted only in or among countries not thus
|
||||
excluded. In such case, this License incorporates the limitation as if
|
||||
written in the body of this License.
|
||||
|
||||
13. The Free Software Foundation may publish revised and/or new
|
||||
versions of the Lesser General Public License from time to time.
|
||||
Such new versions will be similar in spirit to the present version,
|
||||
but may differ in detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Library
|
||||
specifies a version number of this License which applies to it and
|
||||
"any later version", you have the option of following the terms and
|
||||
conditions either of that version or of any later version published by
|
||||
the Free Software Foundation. If the Library does not specify a
|
||||
license version number, you may choose any version ever published by
|
||||
the Free Software Foundation.
|
||||
|
||||
14. If you wish to incorporate parts of the Library into other free
|
||||
programs whose distribution conditions are incompatible with these,
|
||||
write to the author to ask for permission. For software which is
|
||||
copyrighted by the Free Software Foundation, write to the Free
|
||||
Software Foundation; we sometimes make exceptions for this. Our
|
||||
decision will be guided by the two goals of preserving the free status
|
||||
of all derivatives of our free software and of promoting the sharing
|
||||
and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
|
||||
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
|
||||
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
|
||||
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
|
||||
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
|
||||
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
|
||||
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
|
||||
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
|
||||
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
|
||||
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
|
||||
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
|
||||
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
|
||||
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
|
||||
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
|
||||
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
||||
DAMAGES.
|
||||
|
||||
273
libraries/Adafruit_BLEFirmata/examples/StandardFirmata/Makefile
Normal file
273
libraries/Adafruit_BLEFirmata/examples/StandardFirmata/Makefile
Normal file
@@ -0,0 +1,273 @@
|
||||
# Arduino makefile
|
||||
#
|
||||
# This makefile allows you to build sketches from the command line
|
||||
# without the Arduino environment (or Java).
|
||||
#
|
||||
# The Arduino environment does preliminary processing on a sketch before
|
||||
# compiling it. If you're using this makefile instead, you'll need to do
|
||||
# a few things differently:
|
||||
#
|
||||
# - Give your program's file a .cpp extension (e.g. foo.cpp).
|
||||
#
|
||||
# - Put this line at top of your code: #include <WProgram.h>
|
||||
#
|
||||
# - Write prototypes for all your functions (or define them before you
|
||||
# call them). A prototype declares the types of parameters a
|
||||
# function will take and what type of value it will return. This
|
||||
# means that you can have a call to a function before the definition
|
||||
# of the function. A function prototype looks like the first line of
|
||||
# the function, with a semi-colon at the end. For example:
|
||||
# int digitalRead(int pin);
|
||||
#
|
||||
# Instructions for using the makefile:
|
||||
#
|
||||
# 1. Copy this file into the folder with your sketch.
|
||||
#
|
||||
# 2. Below, modify the line containing "TARGET" to refer to the name of
|
||||
# of your program's file without an extension (e.g. TARGET = foo).
|
||||
#
|
||||
# 3. Modify the line containg "ARDUINO" to point the directory that
|
||||
# contains the Arduino core (for normal Arduino installations, this
|
||||
# is the hardware/cores/arduino sub-directory).
|
||||
#
|
||||
# 4. Modify the line containing "PORT" to refer to the filename
|
||||
# representing the USB or serial connection to your Arduino board
|
||||
# (e.g. PORT = /dev/tty.USB0). If the exact name of this file
|
||||
# changes, you can use * as a wildcard (e.g. PORT = /dev/tty.USB*).
|
||||
#
|
||||
# 5. At the command line, change to the directory containing your
|
||||
# program's file and the makefile.
|
||||
#
|
||||
# 6. Type "make" and press enter to compile/verify your program.
|
||||
#
|
||||
# 7. Type "make upload", reset your Arduino board, and press enter to
|
||||
# upload your program to the Arduino board.
|
||||
#
|
||||
# $Id: Makefile,v 1.7 2007/04/13 05:28:23 eighthave Exp $
|
||||
|
||||
PORT = /dev/tty.usbserial-*
|
||||
TARGET := $(shell pwd | sed 's|.*/\(.*\)|\1|')
|
||||
ARDUINO = /Applications/arduino
|
||||
ARDUINO_SRC = $(ARDUINO)/hardware/cores/arduino
|
||||
ARDUINO_LIB_SRC = $(ARDUINO)/hardware/libraries
|
||||
ARDUINO_TOOLS = $(ARDUINO)/hardware/tools
|
||||
INCLUDE = -I$(ARDUINO_SRC) -I$(ARDUINO)/hardware/tools/avr/avr/include \
|
||||
-I$(ARDUINO_LIB_SRC)/EEPROM \
|
||||
-I$(ARDUINO_LIB_SRC)/Firmata \
|
||||
-I$(ARDUINO_LIB_SRC)/Matrix \
|
||||
-I$(ARDUINO_LIB_SRC)/Servo \
|
||||
-I$(ARDUINO_LIB_SRC)/Wire \
|
||||
-I$(ARDUINO_LIB_SRC)
|
||||
SRC = $(wildcard $(ARDUINO_SRC)/*.c)
|
||||
CXXSRC = applet/$(TARGET).cpp $(ARDUINO_SRC)/HardwareSerial.cpp \
|
||||
$(ARDUINO_LIB_SRC)/EEPROM/EEPROM.cpp \
|
||||
$(ARDUINO_LIB_SRC)/Firmata/Firmata.cpp \
|
||||
$(ARDUINO_LIB_SRC)/Servo/Servo.cpp \
|
||||
$(ARDUINO_SRC)/Print.cpp \
|
||||
$(ARDUINO_SRC)/WMath.cpp
|
||||
HEADERS = $(wildcard $(ARDUINO_SRC)/*.h) $(wildcard $(ARDUINO_LIB_SRC)/*/*.h)
|
||||
|
||||
MCU = atmega168
|
||||
#MCU = atmega8
|
||||
F_CPU = 16000000
|
||||
FORMAT = ihex
|
||||
UPLOAD_RATE = 19200
|
||||
|
||||
# Name of this Makefile (used for "make depend").
|
||||
MAKEFILE = Makefile
|
||||
|
||||
# Debugging format.
|
||||
# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.
|
||||
# AVR (extended) COFF requires stabs, plus an avr-objcopy run.
|
||||
DEBUG = stabs
|
||||
|
||||
OPT = s
|
||||
|
||||
# Place -D or -U options here
|
||||
CDEFS = -DF_CPU=$(F_CPU)
|
||||
CXXDEFS = -DF_CPU=$(F_CPU)
|
||||
|
||||
# Compiler flag to set the C Standard level.
|
||||
# c89 - "ANSI" C
|
||||
# gnu89 - c89 plus GCC extensions
|
||||
# c99 - ISO C99 standard (not yet fully implemented)
|
||||
# gnu99 - c99 plus GCC extensions
|
||||
CSTANDARD = -std=gnu99
|
||||
CDEBUG = -g$(DEBUG)
|
||||
CWARN = -Wall -Wstrict-prototypes
|
||||
CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
|
||||
#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)
|
||||
|
||||
CFLAGS = $(CDEBUG) $(CDEFS) $(INCLUDE) -O$(OPT) $(CWARN) $(CSTANDARD) $(CEXTRA)
|
||||
CXXFLAGS = $(CDEFS) $(INCLUDE) -O$(OPT)
|
||||
#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs
|
||||
LDFLAGS =
|
||||
|
||||
|
||||
# Programming support using avrdude. Settings and variables.
|
||||
AVRDUDE_PROGRAMMER = stk500
|
||||
AVRDUDE_PORT = $(PORT)
|
||||
AVRDUDE_WRITE_FLASH = -U flash:w:applet/$(TARGET).hex
|
||||
AVRDUDE_FLAGS = -F -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER) \
|
||||
-b $(UPLOAD_RATE) -q -V
|
||||
|
||||
# Program settings
|
||||
ARDUINO_AVR_BIN = $(ARDUINO_TOOLS)/avr/bin
|
||||
CC = $(ARDUINO_AVR_BIN)/avr-gcc
|
||||
CXX = $(ARDUINO_AVR_BIN)/avr-g++
|
||||
OBJCOPY = $(ARDUINO_AVR_BIN)/avr-objcopy
|
||||
OBJDUMP = $(ARDUINO_AVR_BIN)/avr-objdump
|
||||
SIZE = $(ARDUINO_AVR_BIN)/avr-size
|
||||
NM = $(ARDUINO_AVR_BIN)/avr-nm
|
||||
#AVRDUDE = $(ARDUINO_AVR_BIN)/avrdude
|
||||
AVRDUDE = avrdude
|
||||
REMOVE = rm -f
|
||||
MV = mv -f
|
||||
|
||||
# Define all object files.
|
||||
OBJ = $(SRC:.c=.o) $(CXXSRC:.cpp=.o) $(ASRC:.S=.o)
|
||||
|
||||
# Define all listing files.
|
||||
LST = $(ASRC:.S=.lst) $(CXXSRC:.cpp=.lst) $(SRC:.c=.lst)
|
||||
|
||||
# Combine all necessary flags and optional flags.
|
||||
# Add target processor to flags.
|
||||
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)
|
||||
ALL_CXXFLAGS = -mmcu=$(MCU) -I. $(CXXFLAGS)
|
||||
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
|
||||
|
||||
|
||||
# Default target.
|
||||
all: build
|
||||
|
||||
build: applet/$(TARGET).hex
|
||||
|
||||
eep: applet/$(TARGET).eep
|
||||
lss: applet/$(TARGET).lss
|
||||
sym: applet/$(TARGET).sym
|
||||
|
||||
|
||||
# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
|
||||
COFFCONVERT=$(OBJCOPY) --debugging \
|
||||
--change-section-address .data-0x800000 \
|
||||
--change-section-address .bss-0x800000 \
|
||||
--change-section-address .noinit-0x800000 \
|
||||
--change-section-address .eeprom-0x810000
|
||||
|
||||
|
||||
coff: applet/$(TARGET).elf
|
||||
$(COFFCONVERT) -O coff-avr applet/$(TARGET).elf applet/$(TARGET).cof
|
||||
|
||||
|
||||
extcoff: applet/$(TARGET).elf
|
||||
$(COFFCONVERT) -O coff-ext-avr applet/$(TARGET).elf applet/$(TARGET).cof
|
||||
|
||||
|
||||
.SUFFIXES: .elf .hex .eep .lss .sym .pde
|
||||
|
||||
.elf.hex:
|
||||
$(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@
|
||||
|
||||
.elf.eep:
|
||||
-$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
|
||||
--change-section-lma .eeprom=0 -O $(FORMAT) $< $@
|
||||
|
||||
# Create extended listing file from ELF output file.
|
||||
.elf.lss:
|
||||
$(OBJDUMP) -h -S $< > $@
|
||||
|
||||
# Create a symbol table from ELF output file.
|
||||
.elf.sym:
|
||||
$(NM) -n $< > $@
|
||||
|
||||
|
||||
# Compile: create object files from C++ source files.
|
||||
.cpp.o: $(HEADERS)
|
||||
$(CXX) -c $(ALL_CXXFLAGS) $< -o $@
|
||||
|
||||
# Compile: create object files from C source files.
|
||||
.c.o: $(HEADERS)
|
||||
$(CC) -c $(ALL_CFLAGS) $< -o $@
|
||||
|
||||
|
||||
# Compile: create assembler files from C source files.
|
||||
.c.s:
|
||||
$(CC) -S $(ALL_CFLAGS) $< -o $@
|
||||
|
||||
|
||||
# Assemble: create object files from assembler source files.
|
||||
.S.o:
|
||||
$(CC) -c $(ALL_ASFLAGS) $< -o $@
|
||||
|
||||
|
||||
|
||||
applet/$(TARGET).cpp: $(TARGET).pde
|
||||
test -d applet || mkdir applet
|
||||
echo '#include "WProgram.h"' > applet/$(TARGET).cpp
|
||||
echo '#include "avr/interrupt.h"' >> applet/$(TARGET).cpp
|
||||
sed -n 's|^\(void .*)\).*|\1;|p' $(TARGET).pde | grep -v 'setup()' | \
|
||||
grep -v 'loop()' >> applet/$(TARGET).cpp
|
||||
cat $(TARGET).pde >> applet/$(TARGET).cpp
|
||||
cat $(ARDUINO_SRC)/main.cxx >> applet/$(TARGET).cpp
|
||||
|
||||
# Link: create ELF output file from object files.
|
||||
applet/$(TARGET).elf: applet/$(TARGET).cpp $(OBJ)
|
||||
$(CC) $(ALL_CFLAGS) $(OBJ) -lm --output $@ $(LDFLAGS)
|
||||
# $(CC) $(ALL_CFLAGS) $(OBJ) $(ARDUINO_TOOLS)/avr/avr/lib/avr5/crtm168.o --output $@ $(LDFLAGS)
|
||||
|
||||
pd_close_serial:
|
||||
echo 'close;' | /Applications/Pd-extended.app/Contents/Resources/bin/pdsend 34567 || true
|
||||
|
||||
# Program the device.
|
||||
upload: applet/$(TARGET).hex
|
||||
$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH)
|
||||
|
||||
|
||||
pd_test: build pd_close_serial upload
|
||||
|
||||
# Target: clean project.
|
||||
clean:
|
||||
$(REMOVE) -- applet/$(TARGET).hex applet/$(TARGET).eep \
|
||||
applet/$(TARGET).cof applet/$(TARGET).elf $(TARGET).map \
|
||||
applet/$(TARGET).sym applet/$(TARGET).lss applet/$(TARGET).cpp \
|
||||
$(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d) $(CXXSRC:.cpp=.s) $(CXXSRC:.cpp=.d)
|
||||
rmdir -- applet
|
||||
|
||||
depend:
|
||||
if grep '^# DO NOT DELETE' $(MAKEFILE) >/dev/null; \
|
||||
then \
|
||||
sed -e '/^# DO NOT DELETE/,$$d' $(MAKEFILE) > \
|
||||
$(MAKEFILE).$$$$ && \
|
||||
$(MV) $(MAKEFILE).$$$$ $(MAKEFILE); \
|
||||
fi
|
||||
echo '# DO NOT DELETE THIS LINE -- make depend depends on it.' \
|
||||
>> $(MAKEFILE); \
|
||||
$(CC) -M -mmcu=$(MCU) $(CDEFS) $(INCLUDE) $(SRC) $(ASRC) >> $(MAKEFILE)
|
||||
|
||||
.PHONY: all build eep lss sym coff extcoff clean depend pd_close_serial pd_test
|
||||
|
||||
# for emacs
|
||||
etags:
|
||||
make etags_`uname -s`
|
||||
etags *.pde \
|
||||
$(ARDUINO_SRC)/*.[ch] \
|
||||
$(ARDUINO_SRC)/*.cpp \
|
||||
$(ARDUINO_LIB_SRC)/*/*.[ch] \
|
||||
$(ARDUINO_LIB_SRC)/*/*.cpp \
|
||||
$(ARDUINO)/hardware/tools/avr/avr/include/avr/*.[ch] \
|
||||
$(ARDUINO)/hardware/tools/avr/avr/include/*.[ch]
|
||||
|
||||
etags_Darwin:
|
||||
# etags -a
|
||||
|
||||
etags_Linux:
|
||||
# etags -a /usr/include/*.h linux/input.h /usr/include/sys/*.h
|
||||
|
||||
etags_MINGW:
|
||||
# etags -a /usr/include/*.h /usr/include/sys/*.h
|
||||
|
||||
|
||||
path:
|
||||
echo $(PATH)
|
||||
echo $$PATH
|
||||
|
||||
@@ -0,0 +1,738 @@
|
||||
/*
|
||||
* Firmata is a generic protocol for communicating with microcontrollers
|
||||
* from software on a host computer. It is intended to work with
|
||||
* any host computer software package.
|
||||
*
|
||||
* This version is modified to specifically work with Adafruit's BLE
|
||||
* library. It no longer works over the standard "USB" connection!
|
||||
*/
|
||||
|
||||
/*
|
||||
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
|
||||
Copyright (C) 2010-2011 Paul Stoffregen. All rights reserved.
|
||||
Copyright (C) 2009 Shigeru Kobayashi. All rights reserved.
|
||||
Copyright (C) 2009-2011 Jeff Hoefs. All rights reserved.
|
||||
Copyright (C) 2014 Limor Fried/Kevin Townsend All rights reserved.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
See file LICENSE.txt for further informations on licensing terms.
|
||||
|
||||
formatted using the GNU C formatting and indenting
|
||||
*/
|
||||
|
||||
/*
|
||||
* TODO: use Program Control to load stored profiles from EEPROM
|
||||
*/
|
||||
|
||||
#include <Servo.h>
|
||||
#include <Wire.h>
|
||||
#include <SPI.h>
|
||||
#include <Adafruit_BLE_Firmata.h>
|
||||
#include "Adafruit_BLE_UART.h"
|
||||
|
||||
#define AUTO_INPUT_PULLUPS true
|
||||
|
||||
// Connect CLK/MISO/MOSI to hardware SPI
|
||||
// e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11
|
||||
#define ADAFRUITBLE_REQ 10
|
||||
#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on Uno thats #2 or #3
|
||||
#define ADAFRUITBLE_RST 9
|
||||
|
||||
// so we have digital 3-8 and analog 0-6
|
||||
|
||||
Adafruit_BLE_UART BLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ, ADAFRUITBLE_RDY, ADAFRUITBLE_RST);
|
||||
|
||||
|
||||
// make one instance for the user to use
|
||||
Adafruit_BLE_FirmataClass BLE_Firmata(BLEserial);
|
||||
|
||||
|
||||
/*==============================================================================
|
||||
* GLOBAL VARIABLES
|
||||
*============================================================================*/
|
||||
|
||||
/* analog inputs */
|
||||
int analogInputsToReport = 0; // bitwise array to store pin reporting
|
||||
int lastAnalogReads[NUM_ANALOG_INPUTS];
|
||||
|
||||
/* digital input ports */
|
||||
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
|
||||
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
|
||||
|
||||
/* pins configuration */
|
||||
byte pinConfig[TOTAL_PINS]; // configuration of every pin
|
||||
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
|
||||
int pinState[TOTAL_PINS]; // any value that has been written
|
||||
|
||||
/* timer variables */
|
||||
unsigned long currentMillis; // store the current value from millis()
|
||||
unsigned long previousMillis; // for comparison with currentMillis
|
||||
int samplingInterval = 200; // how often to run the main loop (in ms)
|
||||
#define MINIMUM_SAMPLE_DELAY 150
|
||||
#define ANALOG_SAMPLE_DELAY 50
|
||||
|
||||
|
||||
/* i2c data */
|
||||
struct i2c_device_info {
|
||||
byte addr;
|
||||
byte reg;
|
||||
byte bytes;
|
||||
};
|
||||
|
||||
/* for i2c read continuous more */
|
||||
i2c_device_info query[MAX_QUERIES];
|
||||
|
||||
byte i2cRxData[32];
|
||||
boolean isI2CEnabled = false;
|
||||
signed char queryIndex = -1;
|
||||
unsigned int i2cReadDelayTime = 0; // default delay time between i2c read request and Wire.requestFrom()
|
||||
|
||||
Servo servos[MAX_SERVOS];
|
||||
/*==============================================================================
|
||||
* FUNCTIONS
|
||||
*============================================================================*/
|
||||
|
||||
void readAndReportData(byte address, int theRegister, byte numBytes) {
|
||||
// allow I2C requests that don't require a register read
|
||||
// for example, some devices using an interrupt pin to signify new data available
|
||||
// do not always require the register read so upon interrupt you call Wire.requestFrom()
|
||||
if (theRegister != REGISTER_NOT_SPECIFIED) {
|
||||
Wire.beginTransmission(address);
|
||||
#if ARDUINO >= 100
|
||||
Wire.write((byte)theRegister);
|
||||
#else
|
||||
Wire.send((byte)theRegister);
|
||||
#endif
|
||||
Wire.endTransmission();
|
||||
delayMicroseconds(i2cReadDelayTime); // delay is necessary for some devices such as WiiNunchuck
|
||||
} else {
|
||||
theRegister = 0; // fill the register with a dummy value
|
||||
}
|
||||
|
||||
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
|
||||
|
||||
// check to be sure correct number of bytes were returned by slave
|
||||
if(numBytes == Wire.available()) {
|
||||
i2cRxData[0] = address;
|
||||
i2cRxData[1] = theRegister;
|
||||
for (int i = 0; i < numBytes; i++) {
|
||||
#if ARDUINO >= 100
|
||||
i2cRxData[2 + i] = Wire.read();
|
||||
#else
|
||||
i2cRxData[2 + i] = Wire.receive();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else {
|
||||
if(numBytes > Wire.available()) {
|
||||
BLE_Firmata.sendString("I2C Read Error: Too many bytes received");
|
||||
} else {
|
||||
BLE_Firmata.sendString("I2C Read Error: Too few bytes received");
|
||||
}
|
||||
}
|
||||
|
||||
// send slave address, register and received bytes
|
||||
BLE_Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
|
||||
}
|
||||
|
||||
void outputPort(byte portNumber, byte portValue, byte forceSend)
|
||||
{
|
||||
// pins not configured as INPUT are cleared to zeros
|
||||
portValue = portValue & portConfigInputs[portNumber];
|
||||
// only send if the value is different than previously sent
|
||||
if(forceSend || previousPINs[portNumber] != portValue) {
|
||||
Serial.print(F("Sending update for port ")); Serial.print(portNumber); Serial.print(" = 0x"); Serial.println(portValue, HEX);
|
||||
BLE_Firmata.sendDigitalPort(portNumber, portValue);
|
||||
previousPINs[portNumber] = portValue;
|
||||
}
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------------------------
|
||||
* check all the active digital inputs for change of state, then add any events
|
||||
* to the Serial output queue using Serial.print() */
|
||||
void checkDigitalInputs(boolean forceSend = false)
|
||||
{
|
||||
/* Using non-looping code allows constants to be given to readPort().
|
||||
* The compiler will apply substantial optimizations if the inputs
|
||||
* to readPort() are compile-time constants. */
|
||||
for (uint8_t i=0; i<TOTAL_PORTS; i++) {
|
||||
if (reportPINs[i]) {
|
||||
// Serial.print("Reporting on port "); Serial.print(i); Serial.print(" mask 0x"); Serial.println(portConfigInputs[i], HEX);
|
||||
uint8_t x = readPort(i, portConfigInputs[i]);
|
||||
// Serial.print("Read 0x"); Serial.println(x, HEX);
|
||||
outputPort(i, x, forceSend);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/* sets the pin mode to the correct state and sets the relevant bits in the
|
||||
* two bit-arrays that track Digital I/O and PWM status
|
||||
*/
|
||||
void setPinModeCallback(byte pin, int mode)
|
||||
{
|
||||
if ((pinConfig[pin] == I2C) && (isI2CEnabled) && (mode != I2C)) {
|
||||
// disable i2c so pins can be used for other functions
|
||||
// the following if statements should reconfigure the pins properly
|
||||
disableI2CPins();
|
||||
}
|
||||
if (IS_PIN_SERVO(pin) && mode != SERVO && servos[PIN_TO_SERVO(pin)].attached()) {
|
||||
servos[PIN_TO_SERVO(pin)].detach();
|
||||
}
|
||||
if (IS_PIN_ANALOG(pin)) {
|
||||
reportAnalogCallback(PIN_TO_ANALOG(pin), mode == ANALOG ? 1 : 0); // turn on/off reporting
|
||||
}
|
||||
if (IS_PIN_DIGITAL(pin)) {
|
||||
if (mode == INPUT) {
|
||||
portConfigInputs[pin/8] |= (1 << (pin & 7));
|
||||
} else {
|
||||
portConfigInputs[pin/8] &= ~(1 << (pin & 7));
|
||||
}
|
||||
// Serial.print(F("Setting pin #")); Serial.print(pin); Serial.print(F(" port config mask to = 0x"));
|
||||
// Serial.println(portConfigInputs[pin/8], HEX);
|
||||
}
|
||||
pinState[pin] = 0;
|
||||
switch(mode) {
|
||||
case ANALOG:
|
||||
if (IS_PIN_ANALOG(pin)) {
|
||||
Serial.print(F("Set pin #")); Serial.print(pin); Serial.println(F(" to analog"));
|
||||
if (IS_PIN_DIGITAL(pin)) {
|
||||
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
|
||||
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
|
||||
}
|
||||
pinConfig[pin] = ANALOG;
|
||||
lastAnalogReads[PIN_TO_ANALOG(pin)] = -1;
|
||||
}
|
||||
break;
|
||||
case INPUT:
|
||||
if (IS_PIN_DIGITAL(pin)) {
|
||||
Serial.print(F("Set pin #")); Serial.print(pin); Serial.println(F(" to input"));
|
||||
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
|
||||
if (AUTO_INPUT_PULLUPS) {
|
||||
digitalWrite(PIN_TO_DIGITAL(pin), HIGH); // enable internal pull-ups
|
||||
} else {
|
||||
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
|
||||
}
|
||||
pinConfig[pin] = INPUT;
|
||||
|
||||
// force sending state immediately
|
||||
//delay(10);
|
||||
//checkDigitalInputs(true);
|
||||
}
|
||||
break;
|
||||
case OUTPUT:
|
||||
if (IS_PIN_DIGITAL(pin)) {
|
||||
Serial.print(F("Set pin #")); Serial.print(pin); Serial.println(F(" to output"));
|
||||
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable PWM
|
||||
pinMode(PIN_TO_DIGITAL(pin), OUTPUT);
|
||||
pinConfig[pin] = OUTPUT;
|
||||
}
|
||||
break;
|
||||
case PWM:
|
||||
if (IS_PIN_PWM(pin)) {
|
||||
pinMode(PIN_TO_PWM(pin), OUTPUT);
|
||||
analogWrite(PIN_TO_PWM(pin), 0);
|
||||
pinConfig[pin] = PWM;
|
||||
}
|
||||
break;
|
||||
case SERVO:
|
||||
if (IS_PIN_SERVO(pin)) {
|
||||
pinConfig[pin] = SERVO;
|
||||
if (!servos[PIN_TO_SERVO(pin)].attached()) {
|
||||
servos[PIN_TO_SERVO(pin)].attach(PIN_TO_DIGITAL(pin));
|
||||
}
|
||||
}
|
||||
break;
|
||||
case I2C:
|
||||
if (IS_PIN_I2C(pin)) {
|
||||
// mark the pin as i2c
|
||||
// the user must call I2C_CONFIG to enable I2C for a device
|
||||
pinConfig[pin] = I2C;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
Serial.print(F("Unknown pin mode")); // TODO: put error msgs in EEPROM
|
||||
}
|
||||
// TODO: save status to EEPROM here, if changed
|
||||
}
|
||||
|
||||
void analogWriteCallback(byte pin, int value)
|
||||
{
|
||||
if (pin < TOTAL_PINS) {
|
||||
switch(pinConfig[pin]) {
|
||||
case SERVO:
|
||||
if (IS_PIN_SERVO(pin))
|
||||
servos[PIN_TO_SERVO(pin)].write(value);
|
||||
pinState[pin] = value;
|
||||
break;
|
||||
case PWM:
|
||||
if (IS_PIN_PWM(pin))
|
||||
analogWrite(PIN_TO_PWM(pin), value);
|
||||
pinState[pin] = value;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void digitalWriteCallback(byte port, int value)
|
||||
{
|
||||
byte pin, lastPin, mask=1, pinWriteMask=0;
|
||||
|
||||
if (port < TOTAL_PORTS) {
|
||||
// create a mask of the pins on this port that are writable.
|
||||
lastPin = port*8+8;
|
||||
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
|
||||
for (pin=port*8; pin < lastPin; pin++) {
|
||||
// do not disturb non-digital pins (eg, Rx & Tx)
|
||||
if (IS_PIN_DIGITAL(pin)) {
|
||||
// only write to OUTPUT and INPUT (enables pullup)
|
||||
// do not touch pins in PWM, ANALOG, SERVO or other modes
|
||||
if (pinConfig[pin] == OUTPUT || pinConfig[pin] == INPUT) {
|
||||
pinWriteMask |= mask;
|
||||
pinState[pin] = ((byte)value & mask) ? 1 : 0;
|
||||
|
||||
if (AUTO_INPUT_PULLUPS && ( pinConfig[pin] == INPUT)) {
|
||||
value |= mask;
|
||||
}
|
||||
}
|
||||
}
|
||||
mask = mask << 1;
|
||||
}
|
||||
Serial.print(F("Write digital port #")); Serial.print(port);
|
||||
Serial.print(F(" = 0x")); Serial.print(value, HEX);
|
||||
Serial.print(F(" mask = 0x")); Serial.println(pinWriteMask, HEX);
|
||||
writePort(port, (byte)value, pinWriteMask);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
|
||||
*/
|
||||
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
|
||||
//}
|
||||
void reportAnalogCallback(byte analogPin, int value)
|
||||
{
|
||||
if (analogPin < TOTAL_ANALOG_PINS) {
|
||||
if(value == 0) {
|
||||
analogInputsToReport = analogInputsToReport &~ (1 << analogPin);
|
||||
Serial.print(F("Stop reporting analog pin #")); Serial.println(analogPin);
|
||||
} else {
|
||||
analogInputsToReport |= (1 << analogPin);
|
||||
Serial.print(F("Will report analog pin #")); Serial.println(analogPin);
|
||||
}
|
||||
}
|
||||
// TODO: save status to EEPROM here, if changed
|
||||
}
|
||||
|
||||
void reportDigitalCallback(byte port, int value)
|
||||
{
|
||||
if (port < TOTAL_PORTS) {
|
||||
Serial.print(F("Will report 0x")); Serial.print(value, HEX); Serial.print(F(" digital mask on port ")); Serial.println(port);
|
||||
reportPINs[port] = (byte)value;
|
||||
}
|
||||
// do not disable analog reporting on these 8 pins, to allow some
|
||||
// pins used for digital, others analog. Instead, allow both types
|
||||
// of reporting to be enabled, but check if the pin is configured
|
||||
// as analog when sampling the analog inputs. Likewise, while
|
||||
// scanning digital pins, portConfigInputs will mask off values from any
|
||||
// pins configured as analog
|
||||
}
|
||||
|
||||
/*==============================================================================
|
||||
* SYSEX-BASED commands
|
||||
*============================================================================*/
|
||||
|
||||
void sysexCallback(byte command, byte argc, byte *argv)
|
||||
{
|
||||
byte mode;
|
||||
byte slaveAddress;
|
||||
byte slaveRegister;
|
||||
byte data;
|
||||
unsigned int delayTime;
|
||||
|
||||
switch(command) {
|
||||
case I2C_REQUEST:
|
||||
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
|
||||
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
|
||||
//BLE_Firmata.sendString("10-bit addressing mode is not yet supported");
|
||||
Serial.println(F("10-bit addressing mode is not yet supported"));
|
||||
return;
|
||||
}
|
||||
else {
|
||||
slaveAddress = argv[0];
|
||||
}
|
||||
|
||||
switch(mode) {
|
||||
case I2C_WRITE:
|
||||
Wire.beginTransmission(slaveAddress);
|
||||
for (byte i = 2; i < argc; i += 2) {
|
||||
data = argv[i] + (argv[i + 1] << 7);
|
||||
#if ARDUINO >= 100
|
||||
Wire.write(data);
|
||||
#else
|
||||
Wire.send(data);
|
||||
#endif
|
||||
}
|
||||
Wire.endTransmission();
|
||||
delayMicroseconds(70);
|
||||
break;
|
||||
case I2C_READ:
|
||||
if (argc == 6) {
|
||||
// a slave register is specified
|
||||
slaveRegister = argv[2] + (argv[3] << 7);
|
||||
data = argv[4] + (argv[5] << 7); // bytes to read
|
||||
readAndReportData(slaveAddress, (int)slaveRegister, data);
|
||||
}
|
||||
else {
|
||||
// a slave register is NOT specified
|
||||
data = argv[2] + (argv[3] << 7); // bytes to read
|
||||
readAndReportData(slaveAddress, (int)REGISTER_NOT_SPECIFIED, data);
|
||||
}
|
||||
break;
|
||||
case I2C_READ_CONTINUOUSLY:
|
||||
if ((queryIndex + 1) >= MAX_QUERIES) {
|
||||
// too many queries, just ignore
|
||||
BLE_Firmata.sendString("too many queries");
|
||||
break;
|
||||
}
|
||||
queryIndex++;
|
||||
query[queryIndex].addr = slaveAddress;
|
||||
query[queryIndex].reg = argv[2] + (argv[3] << 7);
|
||||
query[queryIndex].bytes = argv[4] + (argv[5] << 7);
|
||||
break;
|
||||
case I2C_STOP_READING:
|
||||
byte queryIndexToSkip;
|
||||
// if read continuous mode is enabled for only 1 i2c device, disable
|
||||
// read continuous reporting for that device
|
||||
if (queryIndex <= 0) {
|
||||
queryIndex = -1;
|
||||
} else {
|
||||
// if read continuous mode is enabled for multiple devices,
|
||||
// determine which device to stop reading and remove it's data from
|
||||
// the array, shifiting other array data to fill the space
|
||||
for (byte i = 0; i < queryIndex + 1; i++) {
|
||||
if (query[i].addr = slaveAddress) {
|
||||
queryIndexToSkip = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (byte i = queryIndexToSkip; i<queryIndex + 1; i++) {
|
||||
if (i < MAX_QUERIES) {
|
||||
query[i].addr = query[i+1].addr;
|
||||
query[i].reg = query[i+1].addr;
|
||||
query[i].bytes = query[i+1].bytes;
|
||||
}
|
||||
}
|
||||
queryIndex--;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case I2C_CONFIG:
|
||||
delayTime = (argv[0] + (argv[1] << 7));
|
||||
|
||||
if(delayTime > 0) {
|
||||
i2cReadDelayTime = delayTime;
|
||||
}
|
||||
|
||||
if (!isI2CEnabled) {
|
||||
enableI2CPins();
|
||||
}
|
||||
|
||||
break;
|
||||
case SERVO_CONFIG:
|
||||
if(argc > 4) {
|
||||
// these vars are here for clarity, they'll optimized away by the compiler
|
||||
byte pin = argv[0];
|
||||
int minPulse = argv[1] + (argv[2] << 7);
|
||||
int maxPulse = argv[3] + (argv[4] << 7);
|
||||
|
||||
if (IS_PIN_SERVO(pin)) {
|
||||
if (servos[PIN_TO_SERVO(pin)].attached())
|
||||
servos[PIN_TO_SERVO(pin)].detach();
|
||||
servos[PIN_TO_SERVO(pin)].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse);
|
||||
setPinModeCallback(pin, SERVO);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case SAMPLING_INTERVAL:
|
||||
if (argc > 1) {
|
||||
samplingInterval = argv[0] + (argv[1] << 7);
|
||||
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
|
||||
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
|
||||
}
|
||||
} else {
|
||||
//BLE_Firmata.sendString("Not enough data");
|
||||
}
|
||||
break;
|
||||
case EXTENDED_ANALOG:
|
||||
if (argc > 1) {
|
||||
int val = argv[1];
|
||||
if (argc > 2) val |= (argv[2] << 7);
|
||||
if (argc > 3) val |= (argv[3] << 14);
|
||||
analogWriteCallback(argv[0], val);
|
||||
}
|
||||
break;
|
||||
case CAPABILITY_QUERY:
|
||||
Serial.write(START_SYSEX);
|
||||
Serial.write(CAPABILITY_RESPONSE);
|
||||
for (byte pin=0; pin < TOTAL_PINS; pin++) {
|
||||
if (IS_PIN_DIGITAL(pin)) {
|
||||
Serial.write((byte)INPUT);
|
||||
Serial.write(1);
|
||||
Serial.write((byte)OUTPUT);
|
||||
Serial.write(1);
|
||||
}
|
||||
if (IS_PIN_ANALOG(pin)) {
|
||||
Serial.write(ANALOG);
|
||||
Serial.write(10);
|
||||
}
|
||||
if (IS_PIN_PWM(pin)) {
|
||||
Serial.write(PWM);
|
||||
Serial.write(8);
|
||||
}
|
||||
if (IS_PIN_SERVO(pin)) {
|
||||
Serial.write(SERVO);
|
||||
Serial.write(14);
|
||||
}
|
||||
if (IS_PIN_I2C(pin)) {
|
||||
Serial.write(I2C);
|
||||
Serial.write(1); // to do: determine appropriate value
|
||||
}
|
||||
Serial.write(127);
|
||||
}
|
||||
Serial.write(END_SYSEX);
|
||||
break;
|
||||
case PIN_STATE_QUERY:
|
||||
if (argc > 0) {
|
||||
byte pin=argv[0];
|
||||
Serial.write(START_SYSEX);
|
||||
Serial.write(PIN_STATE_RESPONSE);
|
||||
Serial.write(pin);
|
||||
if (pin < TOTAL_PINS) {
|
||||
Serial.write((byte)pinConfig[pin]);
|
||||
Serial.write((byte)pinState[pin] & 0x7F);
|
||||
if (pinState[pin] & 0xFF80) Serial.write((byte)(pinState[pin] >> 7) & 0x7F);
|
||||
if (pinState[pin] & 0xC000) Serial.write((byte)(pinState[pin] >> 14) & 0x7F);
|
||||
}
|
||||
Serial.write(END_SYSEX);
|
||||
}
|
||||
break;
|
||||
case ANALOG_MAPPING_QUERY:
|
||||
Serial.write(START_SYSEX);
|
||||
Serial.write(ANALOG_MAPPING_RESPONSE);
|
||||
for (byte pin=0; pin < TOTAL_PINS; pin++) {
|
||||
Serial.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127);
|
||||
}
|
||||
Serial.write(END_SYSEX);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void enableI2CPins()
|
||||
{
|
||||
byte i;
|
||||
// is there a faster way to do this? would probaby require importing
|
||||
// Arduino.h to get SCL and SDA pins
|
||||
for (i=0; i < TOTAL_PINS; i++) {
|
||||
if(IS_PIN_I2C(i)) {
|
||||
// mark pins as i2c so they are ignore in non i2c data requests
|
||||
setPinModeCallback(i, I2C);
|
||||
}
|
||||
}
|
||||
|
||||
isI2CEnabled = true;
|
||||
|
||||
// is there enough time before the first I2C request to call this here?
|
||||
Wire.begin();
|
||||
}
|
||||
|
||||
/* disable the i2c pins so they can be used for other functions */
|
||||
void disableI2CPins() {
|
||||
isI2CEnabled = false;
|
||||
// disable read continuous mode for all devices
|
||||
queryIndex = -1;
|
||||
// uncomment the following if or when the end() method is added to Wire library
|
||||
// Wire.end();
|
||||
}
|
||||
|
||||
/*==============================================================================
|
||||
* SETUP()
|
||||
*============================================================================*/
|
||||
|
||||
void systemResetCallback()
|
||||
{
|
||||
// initialize a defalt state
|
||||
Serial.println(F("***RESET***"));
|
||||
// TODO: option to load config from EEPROM instead of default
|
||||
if (isI2CEnabled) {
|
||||
disableI2CPins();
|
||||
}
|
||||
for (byte i=0; i < TOTAL_PORTS; i++) {
|
||||
reportPINs[i] = false; // by default, reporting off
|
||||
portConfigInputs[i] = 0; // until activated
|
||||
previousPINs[i] = 0;
|
||||
}
|
||||
// pins with analog capability default to analog input
|
||||
// otherwise, pins default to digital output
|
||||
for (byte i=0; i < TOTAL_PINS; i++) {
|
||||
if (IS_PIN_ANALOG(i)) {
|
||||
// turns off pullup, configures everything
|
||||
setPinModeCallback(i, ANALOG);
|
||||
} else {
|
||||
// sets the output to 0, configures portConfigInputs
|
||||
setPinModeCallback(i, INPUT);
|
||||
}
|
||||
}
|
||||
// by default, do not report any analog inputs
|
||||
analogInputsToReport = 0;
|
||||
|
||||
/* send digital inputs to set the initial state on the host computer,
|
||||
* since once in the loop(), this firmware will only send on change */
|
||||
/*
|
||||
TODO: this can never execute, since no pins default to digital input
|
||||
but it will be needed when/if we support EEPROM stored config
|
||||
for (byte i=0; i < TOTAL_PORTS; i++) {
|
||||
outputPort(i, readPort(i, portConfigInputs[i]), true);
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
|
||||
aci_evt_opcode_t lastBTLEstatus, BTLEstatus;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
Serial.println(F("Adafruit BTLE Firmata test"));
|
||||
|
||||
BLEserial.begin();
|
||||
|
||||
BTLEstatus = lastBTLEstatus = ACI_EVT_DISCONNECTED;
|
||||
}
|
||||
|
||||
void firmataInit() {
|
||||
Serial.println(F("Init firmata"));
|
||||
//BLE_Firmata.setFirmwareVersion(FIRMATA_MAJOR_VERSION, FIRMATA_MINOR_VERSION);
|
||||
//Serial.println(F("firmata analog"));
|
||||
BLE_Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
|
||||
//Serial.println(F("firmata digital"));
|
||||
BLE_Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
|
||||
//Serial.println(F("firmata analog report"));
|
||||
BLE_Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
|
||||
//Serial.println(F("firmata digital report"));
|
||||
BLE_Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
|
||||
//Serial.println(F("firmata pinmode"));
|
||||
BLE_Firmata.attach(SET_PIN_MODE, setPinModeCallback);
|
||||
//Serial.println(F("firmata sysex"));
|
||||
BLE_Firmata.attach(START_SYSEX, sysexCallback);
|
||||
//Serial.println(F("firmata reset"));
|
||||
BLE_Firmata.attach(SYSTEM_RESET, systemResetCallback);
|
||||
|
||||
Serial.println(F("Begin firmata"));
|
||||
BLE_Firmata.begin();
|
||||
systemResetCallback(); // reset to default config
|
||||
}
|
||||
/*==============================================================================
|
||||
* LOOP()
|
||||
*============================================================================*/
|
||||
|
||||
void loop()
|
||||
{
|
||||
// Check the BTLE link, how're we doing?
|
||||
BLEserial.pollACI();
|
||||
// Link status check
|
||||
BTLEstatus = BLEserial.getState();
|
||||
|
||||
// Check if something has changed
|
||||
if (BTLEstatus != lastBTLEstatus) {
|
||||
// print it out!
|
||||
if (BTLEstatus == ACI_EVT_DEVICE_STARTED) {
|
||||
Serial.println(F("* Advertising started"));
|
||||
}
|
||||
if (BTLEstatus == ACI_EVT_CONNECTED) {
|
||||
Serial.println(F("* Connected!"));
|
||||
// initialize Firmata cleanly
|
||||
firmataInit();
|
||||
}
|
||||
if (BTLEstatus == ACI_EVT_DISCONNECTED) {
|
||||
Serial.println(F("* Disconnected or advertising timed out"));
|
||||
}
|
||||
// OK set the last status change to this one
|
||||
lastBTLEstatus = BTLEstatus;
|
||||
}
|
||||
|
||||
// if not connected... bail
|
||||
if (BTLEstatus != ACI_EVT_CONNECTED) {
|
||||
delay(100);
|
||||
return;
|
||||
}
|
||||
|
||||
// For debugging, see if there's data on the serial console, we would forwad it to BTLE
|
||||
if (Serial.available()) {
|
||||
BLEserial.write(Serial.read());
|
||||
}
|
||||
|
||||
// Onto the Firmata main loop
|
||||
|
||||
byte pin, analogPin;
|
||||
|
||||
/* DIGITALREAD - as fast as possible, check for changes and output them to the
|
||||
* BTLE buffer using Serial.print() */
|
||||
checkDigitalInputs();
|
||||
|
||||
/* SERIALREAD - processing incoming messagse as soon as possible, while still
|
||||
* checking digital inputs. */
|
||||
while(BLE_Firmata.available()) {
|
||||
//Serial.println(F("*data available*"));
|
||||
BLE_Firmata.processInput();
|
||||
}
|
||||
/* SEND FTDI WRITE BUFFER - make sure that the FTDI buffer doesn't go over
|
||||
* 60 bytes. use a timer to sending an event character every 4 ms to
|
||||
* trigger the buffer to dump. */
|
||||
|
||||
// make the sampling interval longer if we have more analog inputs!
|
||||
uint8_t analogreportnums = 0;
|
||||
for(uint8_t a=0; a<8; a++) {
|
||||
if (analogInputsToReport & (1 << a)) {
|
||||
analogreportnums++;
|
||||
}
|
||||
}
|
||||
|
||||
samplingInterval = (uint16_t)MINIMUM_SAMPLE_DELAY + (uint16_t)ANALOG_SAMPLE_DELAY * (1+analogreportnums);
|
||||
|
||||
currentMillis = millis();
|
||||
if (currentMillis - previousMillis > samplingInterval) {
|
||||
previousMillis += samplingInterval;
|
||||
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
|
||||
for(pin=0; pin<TOTAL_PINS; pin++) {
|
||||
if (IS_PIN_ANALOG(pin) && (pinConfig[pin] == ANALOG)) {
|
||||
analogPin = PIN_TO_ANALOG(pin);
|
||||
|
||||
if (analogInputsToReport & (1 << analogPin)) {
|
||||
int currentRead = analogRead(analogPin);
|
||||
|
||||
if ((lastAnalogReads[analogPin] == -1) || (lastAnalogReads[analogPin] != currentRead)) {
|
||||
Serial.print(F("Analog")); Serial.print(analogPin); Serial.print(F(" = ")); Serial.println(currentRead);
|
||||
BLE_Firmata.sendAnalog(analogPin, currentRead);
|
||||
lastAnalogReads[analogPin] = currentRead;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// report i2c data for all device with read continuous mode enabled
|
||||
if (queryIndex > -1) {
|
||||
for (byte i = 0; i < queryIndex + 1; i++) {
|
||||
readAndReportData(query[i].addr, query[i].reg, query[i].bytes);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user