initial commit

This commit is contained in:
2018-08-08 08:33:26 +02:00
commit ada8fdbdf9
368 changed files with 65878 additions and 0 deletions

View File

@@ -0,0 +1,448 @@
/**
FirmataStepper is a simple non-blocking stepper motor library
for 2 and 4 wire bipolar and unipolar stepper motor drive circuits
as well as EasyDriver (http://schmalzhaus.com/EasyDriver/) and
other step + direction drive circuits.
FirmataStepper (0.2) by Jeff Hoefs
EasyDriver support based on modifications by Chris Coleman
Acceleration / Deceleration algorithms and code based on:
app note: http://www.atmel.com/dyn/resources/prod_documents/doc8017.pdf
source code: http://www.atmel.com/dyn/resources/prod_documents/AVR446.zip
stepMotor function based on Stepper.cpp Stepper library for
Wiring/Arduino created by Tom Igoe, Sebastian Gassner
David Mellis and Noah Shibley.
Relevant notes from Stepper.cpp:
When wiring multiple stepper motors to a microcontroller,
you quickly run out of output pins, with each motor requiring 4 connections.
By making use of the fact that at any time two of the four motor
coils are the inverse of the other two, the number of
control connections can be reduced from 4 to 2.
A slightly modified circuit around a Darlington transistor array or an L293 H-bridge
connects to only 2 microcontroler pins, inverts the signals received,
and delivers the 4 (2 plus 2 inverted ones) output signals required
for driving a stepper motor.
The sequence of control signals for 4 control wires is as follows:
Step C0 C1 C2 C3
1 1 0 1 0
2 0 1 1 0
3 0 1 0 1
4 1 0 0 1
The sequence of controls signals for 2 control wires is as follows
(columns C1 and C2 from above):
Step C0 C1
1 0 1
2 1 1
3 1 0
4 0 0
The circuits can be found at
http://www.arduino.cc/en/Tutorial/Stepper
*/
#include "FirmataStepper.h"
/**
* Constructor.
*
* Configure a stepper for an EasyDriver or other step + direction interface or
* configure a bipolar or unipolar stepper motor for 2 wire drive mode.
* Configure a bipolar or unipolar stepper for 4 wire drive mode.
* @param interface Lower 3 bits:
* The interface type: FirmataStepper::DRIVER,
* FirmataStepper::TWO_WIRE or FirmataStepper::FOUR_WIRE
* Upper 4 bits: Any bits set = use 2 microsecond delay
* @param steps_per_rev The number of steps to make 1 revolution.
* @param first_pin The direction pin (EasyDriver) or the pin attached to the
* 1st motor coil (2 wire drive mode)
* @param second_pin The step pin (EasyDriver) or the pin attached to the 2nd
* motor coil (2 wire drive mode)
* @param motor_pin_3 The pin attached to the 3rd motor coil
* @param motor_pin_4 The pin attached to the 4th motor coil
*/
FirmataStepper::FirmataStepper(byte interface,
int steps_per_rev,
byte pin1,
byte pin2,
byte pin3,
byte pin4)
{
this->step_number = 0; // which step the motor is on
this->direction = 0; // motor direction
this->last_step_time = 0; // time stamp in ms of the last step taken
this->steps_per_rev = steps_per_rev; // total number of steps for this motor
this->running = false;
this->interface = interface & 0x0F; // default to Easy Stepper (or other step + direction driver)
// could update this in future to support additional delays if necessary
if (((interface & 0xF0) >> 4) > 0)
{
// high current driver
this->stepDelay = 2; // microseconds
}
else
{
this->stepDelay = 1; // microseconds
}
this->motor_pin_1 = pin1;
this->motor_pin_2 = pin2;
this->dir_pin = pin1;
this->step_pin = pin2;
// setup the pins on the microcontroller:
pinMode(this->motor_pin_1, OUTPUT);
pinMode(this->motor_pin_2, OUTPUT);
if (this->interface == FirmataStepper::FOUR_WIRE)
{
this->motor_pin_3 = pin3;
this->motor_pin_4 = pin4;
pinMode(this->motor_pin_3, OUTPUT);
pinMode(this->motor_pin_4, OUTPUT);
}
this->alpha = PI_2 / this->steps_per_rev;
this->at_x100 = (long)(this->alpha * T1_FREQ * 100);
this->ax20000 = (long)(this->alpha * 20000);
this->alpha_x2 = this->alpha * 2;
}
/**
* Move the stepper a given number of steps at the specified
* speed (rad/sec), acceleration (rad/sec^2) and deceleration (rad/sec^2).
*
* @param steps_to_move The number ofsteps to move the motor
* @param speed Max speed in 0.01*rad/sec
* @param accel [optional] Acceleration in 0.01*rad/sec^2
* @param decel [optional] Deceleration in 0.01*rad/sec^2
*/
void FirmataStepper::setStepsToMove(long steps_to_move, int speed, int accel, int decel)
{
unsigned long maxStepLimit;
unsigned long accelerationLimit;
this->step_number = 0;
this->lastAccelDelay = 0;
this->stepCount = 0;
this->rest = 0;
if (steps_to_move < 0)
{
this->direction = FirmataStepper::CCW;
steps_to_move = -steps_to_move;
}
else
{
this->direction = FirmataStepper::CW;
}
this->steps_to_move = steps_to_move;
// set max speed limit, by calc min_delay
// min_delay = (alpha / tt)/w
this->min_delay = this->at_x100 / speed;
// if acceleration or deceleration are not defined
// start in RUN state and do no decelerate
if (accel == 0 || decel == 0)
{
this->step_delay = this->min_delay;
this->decel_start = steps_to_move;
this->run_state = FirmataStepper::RUN;
this->accel_count = 0;
this->running = true;
return;
}
// if only moving 1 step
if (steps_to_move == 1)
{
// move one step
this->accel_count = -1;
this->run_state = FirmataStepper::DECEL;
this->step_delay = this->min_delay;
this->running = true;
}
else if (steps_to_move != 0)
{
// set initial step delay
// step_delay = 1/tt * sqrt(2*alpha/accel)
// step_delay = ( tfreq*0.676/100 )*100 * sqrt( (2*alpha*10000000000) / (accel*100) )/10000
this->step_delay = (long)((T1_FREQ_148 * sqrt(alpha_x2 / accel)) * 1000);
// find out after how many steps does the speed hit the max speed limit.
// maxSpeedLimit = speed^2 / (2*alpha*accel)
maxStepLimit = (long)speed * speed / (long)(((long)this->ax20000 * accel) / 100);
// if we hit max spped limit before 0.5 step it will round to 0.
// but in practice we need to move at least 1 step to get any speed at all.
if (maxStepLimit == 0)
{
maxStepLimit = 1;
}
// find out after how many steps we must start deceleration.
// n1 = (n1+n2)decel / (accel + decel)
accelerationLimit = (long)((steps_to_move * decel) / (accel + decel));
// we must accelerate at least 1 step before we can start deceleration
if (accelerationLimit == 0)
{
accelerationLimit = 1;
}
// use the limit we hit first to calc decel
if (accelerationLimit <= maxStepLimit)
{
this->decel_val = accelerationLimit - steps_to_move;
}
else
{
this->decel_val = -(long)(maxStepLimit * accel) / decel;
}
// we must decelerate at least 1 step to stop
if (this->decel_val == 0)
{
this->decel_val = -1;
}
// find step to start deceleration
this->decel_start = steps_to_move + this->decel_val;
// if the max speed is so low that we don't need to go via acceleration state.
if (this->step_delay <= this->min_delay)
{
this->step_delay = this->min_delay;
this->run_state = FirmataStepper::RUN;
}
else
{
this->run_state = FirmataStepper::ACCEL;
}
// reset counter
this->accel_count = 0;
this->running = true;
}
}
bool FirmataStepper::update()
{
bool done = false;
unsigned long newStepDelay = this->min_delay;
unsigned long curTimeVal = micros();
unsigned long timeDiff = curTimeVal - this->last_step_time;
if (this->running == true && timeDiff >= this->step_delay)
{
this->last_step_time = curTimeVal;
switch (this->run_state)
{
case FirmataStepper::STOP:
this->stepCount = 0;
this->rest = 0;
if (this->running)
{
done = true;
}
this->running = false;
break;
case FirmataStepper::ACCEL:
updateStepPosition();
this->stepCount++;
this->accel_count++;
newStepDelay = this->step_delay - (((2 * (long)this->step_delay) + this->rest) / (4 * this->accel_count + 1));
this->rest = ((2 * (long)this->step_delay) + this->rest) % (4 * this->accel_count + 1);
// check if we should start deceleration
if (this->stepCount >= this->decel_start)
{
this->accel_count = this->decel_val;
this->run_state = FirmataStepper::DECEL;
this->rest = 0;
}
// check if we hit max speed
else if (newStepDelay <= this->min_delay)
{
this->lastAccelDelay = newStepDelay;
newStepDelay = this->min_delay;
this->rest = 0;
this->run_state = FirmataStepper::RUN;
}
break;
case FirmataStepper::RUN:
updateStepPosition();
this->stepCount++;
// if no accel or decel was specified, go directly to STOP state
if (stepCount >= this->steps_to_move)
{
this->run_state = FirmataStepper::STOP;
}
// check if we should start deceleration
else if (this->stepCount >= this->decel_start)
{
this->accel_count = this->decel_val;
// start deceleration with same delay that accel ended with
newStepDelay = this->lastAccelDelay;
this->run_state = FirmataStepper::DECEL;
}
break;
case FirmataStepper::DECEL:
updateStepPosition();
this->stepCount++;
this->accel_count++;
newStepDelay = this->step_delay - (((2 * (long)this->step_delay) + this->rest) / (4 * this->accel_count + 1));
this->rest = ((2 * (long)this->step_delay) + this->rest) % (4 * this->accel_count + 1);
if (newStepDelay < 0) newStepDelay = -newStepDelay;
// check if we ar at the last step
if (this->accel_count >= 0)
{
this->run_state = FirmataStepper::STOP;
}
break;
}
this->step_delay = newStepDelay;
}
return done;
}
/**
* Update the step position.
* @private
*/
void FirmataStepper::updateStepPosition()
{
// increment or decrement the step number,
// depending on direction:
if (this->direction == FirmataStepper::CW)
{
this->step_number++;
if (this->step_number >= this->steps_per_rev)
{
this->step_number = 0;
}
}
else
{
if (this->step_number <= 0)
{
this->step_number = this->steps_per_rev;
}
this->step_number--;
}
// step the motor to step number 0, 1, 2, or 3:
stepMotor(this->step_number % 4, this->direction);
}
/**
* Moves the motor forward or backwards.
* @param step_num For 2 or 4 wire configurations, this is the current step in
* the 2 or 4 step sequence.
* @param direction The direction of rotation
*/
void FirmataStepper::stepMotor(byte step_num, byte direction)
{
if (this->interface == FirmataStepper::DRIVER)
{
digitalWrite(dir_pin, direction);
delayMicroseconds(this->stepDelay);
digitalWrite(step_pin, LOW);
delayMicroseconds(this->stepDelay);
digitalWrite(step_pin, HIGH);
}
else if (this->interface == FirmataStepper::TWO_WIRE)
{
switch (step_num)
{
case 0: /* 01 */
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
break;
case 1: /* 11 */
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, HIGH);
break;
case 2: /* 10 */
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
break;
case 3: /* 00 */
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, LOW);
break;
}
}
else if (this->interface == FirmataStepper::FOUR_WIRE)
{
switch (step_num)
{
case 0: // 1010
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
digitalWrite(motor_pin_3, HIGH);
digitalWrite(motor_pin_4, LOW);
break;
case 1: // 0110
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
digitalWrite(motor_pin_3, HIGH);
digitalWrite(motor_pin_4, LOW);
break;
case 2: //0101
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
digitalWrite(motor_pin_3, LOW);
digitalWrite(motor_pin_4, HIGH);
break;
case 3: //1001
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
digitalWrite(motor_pin_3, LOW);
digitalWrite(motor_pin_4, HIGH);
break;
}
}
}
/**
* @return The version number of this library.
*/
byte FirmataStepper::version(void)
{
return 2;
}

View File

@@ -0,0 +1,145 @@
/*
FirmataStepper is a simple non-blocking stepper motor library
for 2 and 4 wire bipolar and unipolar stepper motor drive circuits
as well as EasyDriver (http://schmalzhaus.com/EasyDriver/) and
other step + direction drive circuits.
FirmataStepper (0.2) by Jeff Hoefs
EasyDriver support based on modifications by Chris Coleman
Acceleration / Deceleration algorithms and code based on:
app note: http://www.atmel.com/dyn/resources/prod_documents/doc8017.pdf
source code: http://www.atmel.com/dyn/resources/prod_documents/AVR446.zip
stepMotor function based on Stepper.cpp Stepper library for
Wiring/Arduino created by Tom Igoe, Sebastian Gassner
David Mellis and Noah Shibley.
Relevant notes from Stepper.cpp:
When wiring multiple stepper motors to a microcontroller,
you quickly run out of output pins, with each motor requiring 4 connections.
By making use of the fact that at any time two of the four motor
coils are the inverse of the other two, the number of
control connections can be reduced from 4 to 2.
A slightly modified circuit around a Darlington transistor array or an L293 H-bridge
connects to only 2 microcontroler pins, inverts the signals received,
and delivers the 4 (2 plus 2 inverted ones) output signals required
for driving a stepper motor.
The sequence of control signals for 4 control wires is as follows:
Step C0 C1 C2 C3
1 1 0 1 0
2 0 1 1 0
3 0 1 0 1
4 1 0 0 1
The sequence of controls signals for 2 control wires is as follows
(columns C1 and C2 from above):
Step C0 C1
1 0 1
2 1 1
3 1 0
4 0 0
The circuits can be found at
http://www.arduino.cc/en/Tutorial/Stepper
*/
// ensure this library description is only included once
#ifndef FirmataStepper_h
#define FirmataStepper_h
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#define PI_2 2*3.14159
#define T1_FREQ 1000000L // provides the most accurate step delay values
#define T1_FREQ_148 ((long)((T1_FREQ*0.676)/100)) // divided by 100 and scaled by 0.676
// library interface description
class FirmataStepper
{
public:
FirmataStepper(byte interface = FirmataStepper::DRIVER,
int steps_per_rev = 200,
byte pin1 = 2,
byte pin2 = 3,
byte pin3 = 4,
byte pin4 = 5);
enum Interface
{
DRIVER = 1,
TWO_WIRE = 2,
FOUR_WIRE = 4
};
enum RunState
{
STOP = 0,
ACCEL = 1,
DECEL = 2,
RUN = 3
};
enum Direction
{
CCW = 0,
CW = 1
};
void setStepsToMove(long steps_to_move, int speed, int accel = 0, int decel = 0);
// update the stepper position
bool update();
byte version(void);
private:
void stepMotor(byte step_num, byte direction);
void updateStepPosition();
bool running;
byte interface; // Type of interface: DRIVER, TWO_WIRE or FOUR_WIRE
byte direction; // Direction of rotation
unsigned long step_delay; // delay between steps, in microseconds
int steps_per_rev; // number of steps to make one revolution
long step_number; // which step the motor is on
long steps_to_move; // total number of teps to move
byte stepDelay; // delay between steps (default = 1, increase for high current drivers)
byte run_state;
int accel_count;
unsigned long min_delay;
long decel_start;
int decel_val;
long lastAccelDelay;
long stepCount;
unsigned int rest;
float alpha; // PI * 2 / steps_per_rev
long at_x100; // alpha * T1_FREQ * 100
long ax20000; // alph a* 20000
float alpha_x2; // alpha * 2
// motor pin numbers:
byte dir_pin;
byte step_pin;
byte motor_pin_1;
byte motor_pin_2;
byte motor_pin_3;
byte motor_pin_4;
unsigned long last_step_time; // time stamp in microseconds of when the last step was taken
};
#endif

View File

@@ -0,0 +1,567 @@
/*
Copyright (c) 2007, Jim Studt (original old version - many contributors since)
The latest version of this library may be found at:
http://www.pjrc.com/teensy/td_libs_OneWire.html
OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
January 2010. At the time, it was in need of many bug fixes, but had
been abandoned the original author (Jim Studt). None of the known
contributors were interested in maintaining OneWire. Paul typically
works on OneWire every 6 to 12 months. Patches usually wait that
long. If anyone is interested in more actively maintaining OneWire,
please contact Paul.
Version 2.3:
Unknonw chip fallback mode, Roger Clark
Teensy-LC compatibility, Paul Stoffregen
Search bug fix, Love Nystrom
Version 2.2:
Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
Fix DS18B20 example negative temperature
Fix DS18B20 example's low res modes, Ken Butcher
Improve reset timing, Mark Tillotson
Add const qualifiers, Bertrik Sikken
Add initial value input to crc16, Bertrik Sikken
Add target_search() function, Scott Roberts
Version 2.1:
Arduino 1.0 compatibility, Paul Stoffregen
Improve temperature example, Paul Stoffregen
DS250x_PROM example, Guillermo Lovato
PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
Improvements from Glenn Trewitt:
- crc16() now works
- check_crc16() does all of calculation/checking work.
- Added read_bytes() and write_bytes(), to reduce tedious loops.
- Added ds2408 example.
Delete very old, out-of-date readme file (info is here)
Version 2.0: Modifications by Paul Stoffregen, January 2010:
http://www.pjrc.com/teensy/td_libs_OneWire.html
Search fix from Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Use direct optimized I/O in all cases
Disable interrupts during timing critical sections
(this solves many random communication errors)
Disable interrupts during read-modify-write I/O
Reduce RAM consumption by eliminating unnecessary
variables and trimming many to 8 bits
Optimize both crc8 - table version moved to flash
Modified to work with larger numbers of devices - avoids loop.
Tested in Arduino 11 alpha with 12 sensors.
26 Sept 2008 -- Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Updated to work with arduino-0008 and to include skip() as of
2007/07/06. --RJL20
Modified to calculate the 8-bit CRC directly, avoiding the need for
the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
-- Tom Pollard, Jan 23, 2008
Jim Studt's original library was modified by Josh Larios.
Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Much of the code was inspired by Derek Yerger's code, though I don't
think much of that remains. In any event that was..
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
The CRC code was excerpted and inspired by the Dallas Semiconductor
sample code bearing this copyright.
//---------------------------------------------------------------------------
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// Except as contained in this notice, the name of Dallas Semiconductor
// shall not be used except as stated in the Dallas Semiconductor
// Branding Policy.
//--------------------------------------------------------------------------
*/
#include "OneWire.h"
OneWire::OneWire(uint8_t pin)
{
pinMode(pin, INPUT);
bitmask = PIN_TO_BITMASK(pin);
baseReg = PIN_TO_BASEREG(pin);
#if ONEWIRE_SEARCH
reset_search();
#endif
}
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
uint8_t OneWire::reset(void)
{
IO_REG_TYPE mask = bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
uint8_t r;
uint8_t retries = 125;
noInterrupts();
DIRECT_MODE_INPUT(reg, mask);
interrupts();
// wait until the wire is high... just in case
do {
if (--retries == 0) return 0;
delayMicroseconds(2);
} while ( !DIRECT_READ(reg, mask));
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
interrupts();
delayMicroseconds(480);
noInterrupts();
DIRECT_MODE_INPUT(reg, mask); // allow it to float
delayMicroseconds(70);
r = !DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(410);
return r;
}
//
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
void OneWire::write_bit(uint8_t v)
{
IO_REG_TYPE mask=bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
if (v & 1) {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(10);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(55);
} else {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(65);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(5);
}
}
//
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
uint8_t OneWire::read_bit(void)
{
IO_REG_TYPE mask=bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
uint8_t r;
noInterrupts();
DIRECT_MODE_OUTPUT(reg, mask);
DIRECT_WRITE_LOW(reg, mask);
delayMicroseconds(3);
DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
delayMicroseconds(10);
r = DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(53);
return r;
}
//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
uint8_t bitMask;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
OneWire::write_bit( (bitMask & v)?1:0);
}
if ( !power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
for (uint16_t i = 0 ; i < count ; i++)
write(buf[i]);
if (!power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
//
// Read a byte
//
uint8_t OneWire::read() {
uint8_t bitMask;
uint8_t r = 0;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
if ( OneWire::read_bit()) r |= bitMask;
}
return r;
}
void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
for (uint16_t i = 0 ; i < count ; i++)
buf[i] = read();
}
//
// Do a ROM select
//
void OneWire::select(const uint8_t rom[8])
{
uint8_t i;
write(0x55); // Choose ROM
for (i = 0; i < 8; i++) write(rom[i]);
}
//
// Do a ROM skip
//
void OneWire::skip()
{
write(0xCC); // Skip ROM
}
void OneWire::depower()
{
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
interrupts();
}
#if ONEWIRE_SEARCH
//
// You need to use this function to start a search again from the beginning.
// You do not need to do it for the first search, though you could.
//
void OneWire::reset_search()
{
// reset the search state
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
for(int i = 7; ; i--) {
ROM_NO[i] = 0;
if ( i == 0) break;
}
}
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
//
void OneWire::target_search(uint8_t family_code)
{
// set the search state to find SearchFamily type devices
ROM_NO[0] = family_code;
for (uint8_t i = 1; i < 8; i++)
ROM_NO[i] = 0;
LastDiscrepancy = 64;
LastFamilyDiscrepancy = 0;
LastDeviceFlag = FALSE;
}
//
// Perform a search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned. If a new device is found then
// its address is copied to newAddr. Use OneWire::reset_search() to
// start over.
//
// --- Replaced by the one from the Dallas Semiconductor web site ---
//--------------------------------------------------------------------------
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
// search state.
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : device not found, end of search
//
uint8_t OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
{
uint8_t id_bit_number;
uint8_t last_zero, rom_byte_number, search_result;
uint8_t id_bit, cmp_id_bit;
unsigned char rom_byte_mask, search_direction;
// initialize for search
id_bit_number = 1;
last_zero = 0;
rom_byte_number = 0;
rom_byte_mask = 1;
search_result = 0;
// if the last call was not the last one
if (!LastDeviceFlag)
{
// 1-Wire reset
if (!reset())
{
// reset the search
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
return FALSE;
}
// issue the search command
if (search_mode == true) {
write(0xF0); // NORMAL SEARCH
} else {
write(0xEC); // CONDITIONAL SEARCH
}
// loop to do the search
do
{
// read a bit and its complement
id_bit = read_bit();
cmp_id_bit = read_bit();
// check for no devices on 1-wire
if ((id_bit == 1) && (cmp_id_bit == 1))
break;
else
{
// all devices coupled have 0 or 1
if (id_bit != cmp_id_bit)
search_direction = id_bit; // bit write value for search
else
{
// if this discrepancy if before the Last Discrepancy
// on a previous next then pick the same as last time
if (id_bit_number < LastDiscrepancy)
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
else
// if equal to last pick 1, if not then pick 0
search_direction = (id_bit_number == LastDiscrepancy);
// if 0 was picked then record its position in LastZero
if (search_direction == 0)
{
last_zero = id_bit_number;
// check for Last discrepancy in family
if (last_zero < 9)
LastFamilyDiscrepancy = last_zero;
}
}
// set or clear the bit in the ROM byte rom_byte_number
// with mask rom_byte_mask
if (search_direction == 1)
ROM_NO[rom_byte_number] |= rom_byte_mask;
else
ROM_NO[rom_byte_number] &= ~rom_byte_mask;
// serial number search direction write bit
write_bit(search_direction);
// increment the byte counter id_bit_number
// and shift the mask rom_byte_mask
id_bit_number++;
rom_byte_mask <<= 1;
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
if (rom_byte_mask == 0)
{
rom_byte_number++;
rom_byte_mask = 1;
}
}
}
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
// if the search was successful then
if (!(id_bit_number < 65))
{
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
LastDiscrepancy = last_zero;
// check for last device
if (LastDiscrepancy == 0)
LastDeviceFlag = TRUE;
search_result = TRUE;
}
}
// if no device found then reset counters so next 'search' will be like a first
if (!search_result || !ROM_NO[0])
{
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
search_result = FALSE;
} else {
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
}
return search_result;
}
#endif
#if ONEWIRE_CRC
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
//
#if ONEWIRE_CRC8_TABLE
// This table comes from Dallas sample code where it is freely reusable,
// though Copyright (C) 2000 Dallas Semiconductor Corporation
static const uint8_t PROGMEM dscrc_table[] = {
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
//
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
// and the registers. (note: this might better be done without to
// table, it would probably be smaller and certainly fast enough
// compared to all those delayMicrosecond() calls. But I got
// confused, so I use this table from the examples.)
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
}
return crc;
}
#else
//
// Compute a Dallas Semiconductor 8 bit CRC directly.
// this is much slower, but much smaller, than the lookup table.
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
uint8_t inbyte = *addr++;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
#endif
#if ONEWIRE_CRC16
bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
{
crc = ~crc16(input, len, crc);
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
}
uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
{
static const uint8_t oddparity[16] =
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
for (uint16_t i = 0 ; i < len ; i++) {
// Even though we're just copying a byte from the input,
// we'll be doing 16-bit computation with it.
uint16_t cdata = input[i];
cdata = (cdata ^ crc) & 0xff;
crc >>= 8;
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
crc ^= 0xC001;
cdata <<= 6;
crc ^= cdata;
cdata <<= 1;
crc ^= cdata;
}
return crc;
}
#endif
#endif

View File

@@ -0,0 +1,367 @@
#ifndef OneWire_h
#define OneWire_h
#include <inttypes.h>
#if ARDUINO >= 100
#include "Arduino.h" // for delayMicroseconds, digitalPinToBitMask, etc
#else
#include "WProgram.h" // for delayMicroseconds
#include "pins_arduino.h" // for digitalPinToBitMask, etc
#endif
// You can exclude certain features from OneWire. In theory, this
// might save some space. In practice, the compiler automatically
// removes unused code (technically, the linker, using -fdata-sections
// and -ffunction-sections when compiling, and Wl,--gc-sections
// when linking), so most of these will not result in any code size
// reduction. Well, unless you try to use the missing features
// and redesign your program to not need them! ONEWIRE_CRC8_TABLE
// is the exception, because it selects a fast but large algorithm
// or a small but slow algorithm.
// you can exclude onewire_search by defining that to 0
#ifndef ONEWIRE_SEARCH
#define ONEWIRE_SEARCH 1
#endif
// You can exclude CRC checks altogether by defining this to 0
#ifndef ONEWIRE_CRC
#define ONEWIRE_CRC 1
#endif
// Select the table-lookup method of computing the 8-bit CRC
// by setting this to 1. The lookup table enlarges code size by
// about 250 bytes. It does NOT consume RAM (but did in very
// old versions of OneWire). If you disable this, a slower
// but very compact algorithm is used.
#ifndef ONEWIRE_CRC8_TABLE
#define ONEWIRE_CRC8_TABLE 1
#endif
// You can allow 16-bit CRC checks by defining this to 1
// (Note that ONEWIRE_CRC must also be 1.)
#ifndef ONEWIRE_CRC16
#define ONEWIRE_CRC16 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif
// Platform specific I/O definitions
#if defined(__AVR__)
#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM asm("r30")
#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK66FX1M0__) || defined(__MK64FX512__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (1)
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (*((base)+512))
#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0)
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1)
#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1)
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1)
#elif defined(__MKL26Z64__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) ((*((base)+16) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) (*((base)+20) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+20) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) (*((base)+8) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+4) = (mask))
#elif defined(__SAM3X8E__)
// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
// If you have trouble with OneWire on Arduino Due, please check the
// status of delayMicroseconds() before reporting a bug in OneWire!
#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask))
#ifndef PROGMEM
#define PROGMEM
#endif
#ifndef pgm_read_byte
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
#endif
#elif defined(__PIC32MX__)
#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10
#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08
#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04
#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24
#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28
#elif defined(ARDUINO_ARCH_ESP8266)
#define PIN_TO_BASEREG(pin) ((volatile uint32_t*) GPO)
#define PIN_TO_BITMASK(pin) (1 << pin)
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) ((GPI & (mask)) ? 1 : 0) //GPIO_IN_ADDRESS
#define DIRECT_MODE_INPUT(base, mask) (GPE &= ~(mask)) //GPIO_ENABLE_W1TC_ADDRESS
#define DIRECT_MODE_OUTPUT(base, mask) (GPE |= (mask)) //GPIO_ENABLE_W1TS_ADDRESS
#define DIRECT_WRITE_LOW(base, mask) (GPOC = (mask)) //GPIO_OUT_W1TC_ADDRESS
#define DIRECT_WRITE_HIGH(base, mask) (GPOS = (mask)) //GPIO_OUT_W1TS_ADDRESS
#elif defined(__SAMD21G18A__)
#define PIN_TO_BASEREG(pin) portModeRegister(digitalPinToPort(pin))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (((*((base)+8)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) = (mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+2)) = (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+5)) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+6)) = (mask))
#elif defined(RBL_NRF51822)
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) (pin)
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, pin) nrf_gpio_pin_read(pin)
#define DIRECT_WRITE_LOW(base, pin) nrf_gpio_pin_clear(pin)
#define DIRECT_WRITE_HIGH(base, pin) nrf_gpio_pin_set(pin)
#define DIRECT_MODE_INPUT(base, pin) nrf_gpio_cfg_input(pin, NRF_GPIO_PIN_NOPULL)
#define DIRECT_MODE_OUTPUT(base, pin) nrf_gpio_cfg_output(pin)
#elif defined(__arc__) /* Arduino101/Genuino101 specifics */
#include "scss_registers.h"
#include "portable.h"
#include "avr/pgmspace.h"
#define GPIO_ID(pin) (g_APinDescription[pin].ulGPIOId)
#define GPIO_TYPE(pin) (g_APinDescription[pin].ulGPIOType)
#define GPIO_BASE(pin) (g_APinDescription[pin].ulGPIOBase)
#define DIR_OFFSET_SS 0x01
#define DIR_OFFSET_SOC 0x04
#define EXT_PORT_OFFSET_SS 0x0A
#define EXT_PORT_OFFSET_SOC 0x50
/* GPIO registers base address */
#define PIN_TO_BASEREG(pin) ((volatile uint32_t *)g_APinDescription[pin].ulGPIOBase)
#define PIN_TO_BITMASK(pin) pin
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
static inline __attribute__((always_inline))
IO_REG_TYPE directRead(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
IO_REG_TYPE ret;
if (SS_GPIO == GPIO_TYPE(pin)) {
ret = READ_ARC_REG(((IO_REG_TYPE)base + EXT_PORT_OFFSET_SS));
} else {
ret = MMIO_REG_VAL_FROM_BASE((IO_REG_TYPE)base, EXT_PORT_OFFSET_SOC);
}
return ((ret >> GPIO_ID(pin)) & 0x01);
}
static inline __attribute__((always_inline))
void directModeInput(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
if (SS_GPIO == GPIO_TYPE(pin)) {
WRITE_ARC_REG(READ_ARC_REG((((IO_REG_TYPE)base) + DIR_OFFSET_SS)) & ~(0x01 << GPIO_ID(pin)),
((IO_REG_TYPE)(base) + DIR_OFFSET_SS));
} else {
MMIO_REG_VAL_FROM_BASE((IO_REG_TYPE)base, DIR_OFFSET_SOC) &= ~(0x01 << GPIO_ID(pin));
}
}
static inline __attribute__((always_inline))
void directModeOutput(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
if (SS_GPIO == GPIO_TYPE(pin)) {
WRITE_ARC_REG(READ_ARC_REG(((IO_REG_TYPE)(base) + DIR_OFFSET_SS)) | (0x01 << GPIO_ID(pin)),
((IO_REG_TYPE)(base) + DIR_OFFSET_SS));
} else {
MMIO_REG_VAL_FROM_BASE((IO_REG_TYPE)base, DIR_OFFSET_SOC) |= (0x01 << GPIO_ID(pin));
}
}
static inline __attribute__((always_inline))
void directWriteLow(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
if (SS_GPIO == GPIO_TYPE(pin)) {
WRITE_ARC_REG(READ_ARC_REG(base) & ~(0x01 << GPIO_ID(pin)), base);
} else {
MMIO_REG_VAL(base) &= ~(0x01 << GPIO_ID(pin));
}
}
static inline __attribute__((always_inline))
void directWriteHigh(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
if (SS_GPIO == GPIO_TYPE(pin)) {
WRITE_ARC_REG(READ_ARC_REG(base) | (0x01 << GPIO_ID(pin)), base);
} else {
MMIO_REG_VAL(base) |= (0x01 << GPIO_ID(pin));
}
}
#define DIRECT_READ(base, pin) directRead(base, pin)
#define DIRECT_MODE_INPUT(base, pin) directModeInput(base, pin)
#define DIRECT_MODE_OUTPUT(base, pin) directModeOutput(base, pin)
#define DIRECT_WRITE_LOW(base, pin) directWriteLow(base, pin)
#define DIRECT_WRITE_HIGH(base, pin) directWriteHigh(base, pin)
#else
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) (pin)
#define IO_REG_TYPE unsigned int
#define IO_REG_ASM
#define DIRECT_READ(base, pin) digitalRead(pin)
#define DIRECT_WRITE_LOW(base, pin) digitalWrite(pin, LOW)
#define DIRECT_WRITE_HIGH(base, pin) digitalWrite(pin, HIGH)
#define DIRECT_MODE_INPUT(base, pin) pinMode(pin,INPUT)
#define DIRECT_MODE_OUTPUT(base, pin) pinMode(pin,OUTPUT)
#warning "OneWire. Fallback mode. Using API calls for pinMode,digitalRead and digitalWrite. Operation of this library is not guaranteed on this architecture."
#endif
class OneWire
{
private:
IO_REG_TYPE bitmask;
volatile IO_REG_TYPE *baseReg;
#if ONEWIRE_SEARCH
// global search state
unsigned char ROM_NO[8];
uint8_t LastDiscrepancy;
uint8_t LastFamilyDiscrepancy;
uint8_t LastDeviceFlag;
#endif
public:
OneWire( uint8_t pin);
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
// with a presence pulse. Returns 0 if there is no device or the
// bus is shorted or otherwise held low for more than 250uS
uint8_t reset(void);
// Issue a 1-Wire rom select command, you do the reset first.
void select(const uint8_t rom[8]);
// Issue a 1-Wire rom skip command, to address all on bus.
void skip(void);
// Write a byte. If 'power' is one then the wire is held high at
// the end for parasitically powered devices. You are responsible
// for eventually depowering it by calling depower() or doing
// another read or write.
void write(uint8_t v, uint8_t power = 0);
void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
// Read a byte.
uint8_t read(void);
void read_bytes(uint8_t *buf, uint16_t count);
// Write a bit. The bus is always left powered at the end, see
// note in write() about that.
void write_bit(uint8_t v);
// Read a bit.
uint8_t read_bit(void);
// Stop forcing power onto the bus. You only need to do this if
// you used the 'power' flag to write() or used a write_bit() call
// and aren't about to do another read or write. You would rather
// not leave this powered if you don't have to, just in case
// someone shorts your bus.
void depower(void);
#if ONEWIRE_SEARCH
// Clear the search state so that if will start from the beginning again.
void reset_search();
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
void target_search(uint8_t family_code);
// Look for the next device. Returns 1 if a new address has been
// returned. A zero might mean that the bus is shorted, there are
// no devices, or you have already retrieved all of them. It
// might be a good idea to check the CRC to make sure you didn't
// get garbage. The order is deterministic. You will always get
// the same devices in the same order.
uint8_t search(uint8_t *newAddr, bool search_mode = true);
#endif
#if ONEWIRE_CRC
// Compute a Dallas Semiconductor 8 bit CRC, these are used in the
// ROM and scratchpad registers.
static uint8_t crc8(const uint8_t *addr, uint8_t len);
#if ONEWIRE_CRC16
// Compute the 1-Wire CRC16 and compare it against the received CRC.
// Example usage (reading a DS2408):
// // Put everything in a buffer so we can compute the CRC easily.
// uint8_t buf[13];
// buf[0] = 0xF0; // Read PIO Registers
// buf[1] = 0x88; // LSB address
// buf[2] = 0x00; // MSB address
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
// if (!CheckCRC16(buf, 11, &buf[11])) {
// // Handle error.
// }
//
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param inverted_crc - The two CRC16 bytes in the received data.
// This should just point into the received data,
// *not* at a 16-bit integer.
// @param crc - The crc starting value (optional)
// @return True, iff the CRC matches.
static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
// the integrity of data received from many 1-Wire devices. Note that the
// CRC computed here is *not* what you'll get from the 1-Wire network,
// for two reasons:
// 1) The CRC is transmitted bitwise inverted.
// 2) Depending on the endian-ness of your processor, the binary
// representation of the two-byte return value may have a different
// byte order than the two bytes you get from 1-Wire.
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param crc - The crc starting value (optional)
// @return The CRC16, as defined by Dallas Semiconductor.
static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
#endif
#endif
};
#endif

View File

@@ -0,0 +1,4 @@
/*
* Implementation is in WiFi101Stream.h to avoid linker issues. Legacy WiFi and modern WiFi101
* both define WiFiClass which will cause linker errors whenever Firmata.h is included.
*/

View File

@@ -0,0 +1,259 @@
/*
WiFi101Stream.h
An Arduino Stream that wraps an instance of a WiFi101 server. For use
with Arduino WiFi 101 shield, Arduino MKR1000 and other boards and
shields that are compatible with the Arduino WiFi101 library.
Copyright (C) 2015-2016 Jesse Frush. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
#ifndef WIFI101_STREAM_H
#define WIFI101_STREAM_H
#include <inttypes.h>
#include <Stream.h>
#include <WiFi101.h>
class WiFi101Stream : public Stream
{
private:
WiFiServer _server = WiFiServer(23);
WiFiClient _client;
//configuration members
IPAddress _local_ip;
uint16_t _port = 0;
uint8_t _key_idx = 0; //WEP
const char *_key = nullptr; //WEP
const char *_passphrase = nullptr; //WPA
char *_ssid = nullptr;
inline int connect_client()
{
if( !( _client && _client.connected() ) )
{
WiFiClient newClient = _server.available();
if( !newClient )
{
return 0;
}
_client = newClient;
}
return 1;
}
inline bool is_ready()
{
uint8_t status = WiFi.status();
return !( status == WL_NO_SHIELD || status == WL_CONNECTED );
}
public:
WiFi101Stream() {};
// allows another way to configure a static IP before begin is called
inline void config(IPAddress local_ip)
{
_local_ip = local_ip;
WiFi.config( local_ip );
}
// get DCHP IP
inline IPAddress localIP()
{
return WiFi.localIP();
}
inline bool maintain()
{
if( connect_client() ) return true;
stop();
int result = 0;
if( WiFi.status() != WL_CONNECTED )
{
if( _local_ip )
{
WiFi.config( _local_ip );
}
if( _passphrase )
{
result = WiFi.begin( _ssid, _passphrase);
}
else if( _key_idx && _key )
{
result = WiFi.begin( _ssid, _key_idx, _key );
}
else
{
result = WiFi.begin( _ssid );
}
}
if( result == 0 ) return false;
_server = WiFiServer( _port );
_server.begin();
return result;
}
/******************************************************************************
* Connection functions with DHCP
******************************************************************************/
//OPEN networks
inline int begin(char *ssid, uint16_t port)
{
if( !is_ready() ) return 0;
_ssid = ssid;
_port = port;
int result = WiFi.begin( ssid );
if( result == 0 ) return 0;
_server = WiFiServer( port );
_server.begin();
return result;
}
//WEP-encrypted networks
inline int begin(char *ssid, uint8_t key_idx, const char *key, uint16_t port)
{
if( !is_ready() ) return 0;
_ssid = ssid;
_port = port;
_key_idx = key_idx;
_key = key;
int result = WiFi.begin( ssid, key_idx, key );
if( result == 0 ) return 0;
_server = WiFiServer( port );
_server.begin();
return result;
}
//WPA-encrypted networks
inline int begin(char *ssid, const char *passphrase, uint16_t port)
{
if( !is_ready() ) return 0;
_ssid = ssid;
_port = port;
_passphrase = passphrase;
int result = WiFi.begin( ssid, passphrase);
if( result == 0 ) return 0;
_server = WiFiServer( port );
_server.begin();
return result;
}
/******************************************************************************
* Connection functions without DHCP
******************************************************************************/
//OPEN networks with static IP
inline int begin(char *ssid, IPAddress local_ip, uint16_t port)
{
if( !is_ready() ) return 0;
_ssid = ssid;
_port = port;
_local_ip = local_ip;
WiFi.config( local_ip );
int result = WiFi.begin( ssid );
if( result == 0 ) return 0;
_server = WiFiServer( port );
_server.begin();
return result;
}
//WEP-encrypted networks with static IP
inline int begin(char *ssid, IPAddress local_ip, uint8_t key_idx, const char *key, uint16_t port)
{
if( !is_ready() ) return 0;
_ssid = ssid;
_port = port;
_local_ip = local_ip;
_key_idx = key_idx;
_key = key;
WiFi.config( local_ip );
int result = WiFi.begin( ssid, key_idx, key );
if( result == 0 ) return 0;
_server = WiFiServer( port );
_server.begin();
return result;
}
//WPA-encrypted networks with static IP
inline int begin(char *ssid, IPAddress local_ip, const char *passphrase, uint16_t port)
{
if( !is_ready() ) return 0;
_ssid = ssid;
_port = port;
_local_ip = local_ip;
_passphrase = passphrase;
WiFi.config( local_ip );
int result = WiFi.begin( ssid, passphrase);
if( result == 0 ) return 0;
_server = WiFiServer( port );
_server.begin();
return result;
}
/******************************************************************************
* Stream implementations
******************************************************************************/
inline int available()
{
return connect_client() ? _client.available() : 0;
}
inline void flush()
{
if( _client ) _client.flush();
}
inline int peek()
{
return connect_client() ? _client.peek(): 0;
}
inline int read()
{
return connect_client() ? _client.read() : -1;
}
inline void stop()
{
_client.stop();
}
inline size_t write(uint8_t byte)
{
if( connect_client() ) _client.write( byte );
}
};
#endif //WIFI101_STREAM_H

View File

@@ -0,0 +1,4 @@
/*
* Implementation is in WiFiStream.h to avoid linker issues. Legacy WiFi and modern WiFi101 both
* define WiFiClass which will cause linker errors whenever Firmata.h is included.
*/

View File

@@ -0,0 +1,258 @@
/*
WiFiStream.h
An Arduino Stream that wraps an instance of a WiFi server. For use
with legacy Arduino WiFi shield and other boards and sheilds that
are compatible with the Arduino WiFi library.
Copyright (C) 2015-2016 Jesse Frush. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
#ifndef WIFI_STREAM_H
#define WIFI_STREAM_H
#include <inttypes.h>
#include <Stream.h>
#include <WiFi.h>
class WiFiStream : public Stream
{
private:
WiFiServer _server = WiFiServer(23);
WiFiClient _client;
//configuration members
IPAddress _local_ip;
uint16_t _port = 0;
uint8_t _key_idx = 0; //WEP
const char *_key = nullptr; //WEP
const char *_passphrase = nullptr; //WPA
char *_ssid = nullptr;
inline int connect_client()
{
if( !( _client && _client.connected() ) )
{
WiFiClient newClient = _server.available();
if( !newClient )
{
return 0;
}
_client = newClient;
}
return 1;
}
inline bool is_ready()
{
uint8_t status = WiFi.status();
return !( status == WL_NO_SHIELD || status == WL_CONNECTED );
}
public:
WiFiStream() {};
// allows another way to configure a static IP before begin is called
inline void config(IPAddress local_ip)
{
_local_ip = local_ip;
WiFi.config( local_ip );
}
// get DCHP IP
inline IPAddress localIP()
{
return WiFi.localIP();
}
inline bool maintain()
{
if( connect_client() ) return true;
stop();
int result = 0;
if( WiFi.status() != WL_CONNECTED )
{
if( _local_ip )
{
WiFi.config( _local_ip );
}
if( _passphrase )
{
result = WiFi.begin( _ssid, _passphrase);
}
else if( _key_idx && _key )
{
result = WiFi.begin( _ssid, _key_idx, _key );
}
else
{
result = WiFi.begin( _ssid );
}
}
if( result == 0 ) return false;
_server = WiFiServer( _port );
_server.begin();
return result;
}
/******************************************************************************
* Connection functions with DHCP
******************************************************************************/
//OPEN networks
inline int begin(char *ssid, uint16_t port)
{
if( !is_ready() ) return 0;
_ssid = ssid;
_port = port;
int result = WiFi.begin( ssid );
if( result == 0 ) return 0;
_server = WiFiServer( port );
_server.begin();
return result;
}
//WEP-encrypted networks
inline int begin(char *ssid, uint8_t key_idx, const char *key, uint16_t port)
{
if( !is_ready() ) return 0;
_ssid = ssid;
_port = port;
_key_idx = key_idx;
_key = key;
int result = WiFi.begin( ssid, key_idx, key );
if( result == 0 ) return 0;
_server = WiFiServer( port );
_server.begin();
return result;
}
//WPA-encrypted networks
inline int begin(char *ssid, const char *passphrase, uint16_t port)
{
if( !is_ready() ) return 0;
_ssid = ssid;
_port = port;
_passphrase = passphrase;
int result = WiFi.begin( ssid, passphrase);
if( result == 0 ) return 0;
_server = WiFiServer( port );
_server.begin();
return result;
}
/******************************************************************************
* Connection functions without DHCP
******************************************************************************/
//OPEN networks with static IP
inline int begin(char *ssid, IPAddress local_ip, uint16_t port)
{
if( !is_ready() ) return 0;
_ssid = ssid;
_port = port;
_local_ip = local_ip;
WiFi.config( local_ip );
int result = WiFi.begin( ssid );
if( result == 0 ) return 0;
_server = WiFiServer( port );
_server.begin();
return result;
}
//WEP-encrypted networks with static IP
inline int begin(char *ssid, IPAddress local_ip, uint8_t key_idx, const char *key, uint16_t port)
{
if( !is_ready() ) return 0;
_ssid = ssid;
_port = port;
_local_ip = local_ip;
_key_idx = key_idx;
_key = key;
WiFi.config( local_ip );
int result = WiFi.begin( ssid, key_idx, key );
if( result == 0 ) return 0;
_server = WiFiServer( port );
_server.begin();
return result;
}
//WPA-encrypted networks with static IP
inline int begin(char *ssid, IPAddress local_ip, const char *passphrase, uint16_t port)
{
if( !is_ready() ) return 0;
_ssid = ssid;
_port = port;
_local_ip = local_ip;
_passphrase = passphrase;
WiFi.config( local_ip );
int result = WiFi.begin( ssid, passphrase);
if( result == 0 ) return 0;
_server = WiFiServer( port );
_server.begin();
return result;
}
/******************************************************************************
* Stream implementations
******************************************************************************/
inline int available()
{
return connect_client() ? _client.available() : 0;
}
inline void flush()
{
if( _client ) _client.flush();
}
inline int peek()
{
return connect_client() ? _client.peek(): 0;
}
inline int read()
{
return connect_client() ? _client.read() : -1;
}
inline void stop()
{
_client.stop();
}
inline size_t write(uint8_t byte)
{
if( connect_client() ) _client.write( byte );
}
};
#endif //WIFI_STREAM_H

View File

@@ -0,0 +1,14 @@
#ifndef FIRMATA_DEBUG_H
#define FIRMATA_DEBUG_H
#ifdef SERIAL_DEBUG
#define DEBUG_BEGIN(baud) Serial.begin(baud); while(!Serial) {;}
#define DEBUG_PRINTLN(x) Serial.println (x)
#define DEBUG_PRINT(x) Serial.print (x)
#else
#define DEBUG_BEGIN(baud)
#define DEBUG_PRINTLN(x)
#define DEBUG_PRINT(x)
#endif
#endif /* FIRMATA_DEBUG_H */