/* * Firmata is a generic protocol for communicating with microcontrollers * from software on a host computer. It is intended to work with * any host computer software package. * * This version is modified to specifically work with Adafruit's BLE * library. It no longer works over the standard "USB" connection! */ /* Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved. Copyright (C) 2010-2011 Paul Stoffregen. All rights reserved. Copyright (C) 2009 Shigeru Kobayashi. All rights reserved. Copyright (C) 2009-2011 Jeff Hoefs. All rights reserved. Copyright (C) 2014 Limor Fried/Kevin Townsend All rights reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See file LICENSE.txt for further informations on licensing terms. formatted using the GNU C formatting and indenting */ /* * TODO: use Program Control to load stored profiles from EEPROM */ #include #include #include #include #include "Adafruit_BLE_UART.h" #define AUTO_INPUT_PULLUPS true // Connect CLK/MISO/MOSI to hardware SPI // e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11 #define ADAFRUITBLE_REQ 10 #define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on Uno thats #2 or #3 #define ADAFRUITBLE_RST 9 // so we have digital 3-8 and analog 0-6 Adafruit_BLE_UART BLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ, ADAFRUITBLE_RDY, ADAFRUITBLE_RST); // make one instance for the user to use Adafruit_BLE_FirmataClass BLE_Firmata(BLEserial); /*============================================================================== * GLOBAL VARIABLES *============================================================================*/ /* analog inputs */ int analogInputsToReport = 0; // bitwise array to store pin reporting int lastAnalogReads[NUM_ANALOG_INPUTS]; /* digital input ports */ byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent /* pins configuration */ byte pinConfig[TOTAL_PINS]; // configuration of every pin byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else int pinState[TOTAL_PINS]; // any value that has been written /* timer variables */ unsigned long currentMillis; // store the current value from millis() unsigned long previousMillis; // for comparison with currentMillis int samplingInterval = 200; // how often to run the main loop (in ms) #define MINIMUM_SAMPLE_DELAY 150 #define ANALOG_SAMPLE_DELAY 50 /* i2c data */ struct i2c_device_info { byte addr; byte reg; byte bytes; }; /* for i2c read continuous more */ i2c_device_info query[MAX_QUERIES]; byte i2cRxData[32]; boolean isI2CEnabled = false; signed char queryIndex = -1; unsigned int i2cReadDelayTime = 0; // default delay time between i2c read request and Wire.requestFrom() Servo servos[MAX_SERVOS]; /*============================================================================== * FUNCTIONS *============================================================================*/ void readAndReportData(byte address, int theRegister, byte numBytes) { // allow I2C requests that don't require a register read // for example, some devices using an interrupt pin to signify new data available // do not always require the register read so upon interrupt you call Wire.requestFrom() if (theRegister != REGISTER_NOT_SPECIFIED) { Wire.beginTransmission(address); #if ARDUINO >= 100 Wire.write((byte)theRegister); #else Wire.send((byte)theRegister); #endif Wire.endTransmission(); delayMicroseconds(i2cReadDelayTime); // delay is necessary for some devices such as WiiNunchuck } else { theRegister = 0; // fill the register with a dummy value } Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom // check to be sure correct number of bytes were returned by slave if(numBytes == Wire.available()) { i2cRxData[0] = address; i2cRxData[1] = theRegister; for (int i = 0; i < numBytes; i++) { #if ARDUINO >= 100 i2cRxData[2 + i] = Wire.read(); #else i2cRxData[2 + i] = Wire.receive(); #endif } } else { if(numBytes > Wire.available()) { BLE_Firmata.sendString("I2C Read Error: Too many bytes received"); } else { BLE_Firmata.sendString("I2C Read Error: Too few bytes received"); } } // send slave address, register and received bytes BLE_Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData); } void outputPort(byte portNumber, byte portValue, byte forceSend) { // pins not configured as INPUT are cleared to zeros portValue = portValue & portConfigInputs[portNumber]; // only send if the value is different than previously sent if(forceSend || previousPINs[portNumber] != portValue) { Serial.print(F("Sending update for port ")); Serial.print(portNumber); Serial.print(" = 0x"); Serial.println(portValue, HEX); BLE_Firmata.sendDigitalPort(portNumber, portValue); previousPINs[portNumber] = portValue; } } /* ----------------------------------------------------------------------------- * check all the active digital inputs for change of state, then add any events * to the Serial output queue using Serial.print() */ void checkDigitalInputs(boolean forceSend = false) { /* Using non-looping code allows constants to be given to readPort(). * The compiler will apply substantial optimizations if the inputs * to readPort() are compile-time constants. */ for (uint8_t i=0; i TOTAL_PINS) lastPin = TOTAL_PINS; for (pin=port*8; pin < lastPin; pin++) { // do not disturb non-digital pins (eg, Rx & Tx) if (IS_PIN_DIGITAL(pin)) { // only write to OUTPUT and INPUT (enables pullup) // do not touch pins in PWM, ANALOG, SERVO or other modes if (pinConfig[pin] == OUTPUT || pinConfig[pin] == INPUT) { pinWriteMask |= mask; pinState[pin] = ((byte)value & mask) ? 1 : 0; if (AUTO_INPUT_PULLUPS && ( pinConfig[pin] == INPUT)) { value |= mask; } } } mask = mask << 1; } Serial.print(F("Write digital port #")); Serial.print(port); Serial.print(F(" = 0x")); Serial.print(value, HEX); Serial.print(F(" mask = 0x")); Serial.println(pinWriteMask, HEX); writePort(port, (byte)value, pinWriteMask); } } // ----------------------------------------------------------------------------- /* sets bits in a bit array (int) to toggle the reporting of the analogIns */ //void FirmataClass::setAnalogPinReporting(byte pin, byte state) { //} void reportAnalogCallback(byte analogPin, int value) { if (analogPin < TOTAL_ANALOG_PINS) { if(value == 0) { analogInputsToReport = analogInputsToReport &~ (1 << analogPin); Serial.print(F("Stop reporting analog pin #")); Serial.println(analogPin); } else { analogInputsToReport |= (1 << analogPin); Serial.print(F("Will report analog pin #")); Serial.println(analogPin); } } // TODO: save status to EEPROM here, if changed } void reportDigitalCallback(byte port, int value) { if (port < TOTAL_PORTS) { Serial.print(F("Will report 0x")); Serial.print(value, HEX); Serial.print(F(" digital mask on port ")); Serial.println(port); reportPINs[port] = (byte)value; } // do not disable analog reporting on these 8 pins, to allow some // pins used for digital, others analog. Instead, allow both types // of reporting to be enabled, but check if the pin is configured // as analog when sampling the analog inputs. Likewise, while // scanning digital pins, portConfigInputs will mask off values from any // pins configured as analog } /*============================================================================== * SYSEX-BASED commands *============================================================================*/ void sysexCallback(byte command, byte argc, byte *argv) { byte mode; byte slaveAddress; byte slaveRegister; byte data; unsigned int delayTime; switch(command) { case I2C_REQUEST: mode = argv[1] & I2C_READ_WRITE_MODE_MASK; if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) { //BLE_Firmata.sendString("10-bit addressing mode is not yet supported"); Serial.println(F("10-bit addressing mode is not yet supported")); return; } else { slaveAddress = argv[0]; } switch(mode) { case I2C_WRITE: Wire.beginTransmission(slaveAddress); for (byte i = 2; i < argc; i += 2) { data = argv[i] + (argv[i + 1] << 7); #if ARDUINO >= 100 Wire.write(data); #else Wire.send(data); #endif } Wire.endTransmission(); delayMicroseconds(70); break; case I2C_READ: if (argc == 6) { // a slave register is specified slaveRegister = argv[2] + (argv[3] << 7); data = argv[4] + (argv[5] << 7); // bytes to read readAndReportData(slaveAddress, (int)slaveRegister, data); } else { // a slave register is NOT specified data = argv[2] + (argv[3] << 7); // bytes to read readAndReportData(slaveAddress, (int)REGISTER_NOT_SPECIFIED, data); } break; case I2C_READ_CONTINUOUSLY: if ((queryIndex + 1) >= MAX_QUERIES) { // too many queries, just ignore BLE_Firmata.sendString("too many queries"); break; } queryIndex++; query[queryIndex].addr = slaveAddress; query[queryIndex].reg = argv[2] + (argv[3] << 7); query[queryIndex].bytes = argv[4] + (argv[5] << 7); break; case I2C_STOP_READING: byte queryIndexToSkip; // if read continuous mode is enabled for only 1 i2c device, disable // read continuous reporting for that device if (queryIndex <= 0) { queryIndex = -1; } else { // if read continuous mode is enabled for multiple devices, // determine which device to stop reading and remove it's data from // the array, shifiting other array data to fill the space for (byte i = 0; i < queryIndex + 1; i++) { if (query[i].addr = slaveAddress) { queryIndexToSkip = i; break; } } for (byte i = queryIndexToSkip; i 0) { i2cReadDelayTime = delayTime; } if (!isI2CEnabled) { enableI2CPins(); } break; case SERVO_CONFIG: if(argc > 4) { // these vars are here for clarity, they'll optimized away by the compiler byte pin = argv[0]; int minPulse = argv[1] + (argv[2] << 7); int maxPulse = argv[3] + (argv[4] << 7); if (IS_PIN_SERVO(pin)) { if (servos[PIN_TO_SERVO(pin)].attached()) servos[PIN_TO_SERVO(pin)].detach(); servos[PIN_TO_SERVO(pin)].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse); setPinModeCallback(pin, SERVO); } } break; case SAMPLING_INTERVAL: if (argc > 1) { samplingInterval = argv[0] + (argv[1] << 7); if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) { samplingInterval = MINIMUM_SAMPLING_INTERVAL; } } else { //BLE_Firmata.sendString("Not enough data"); } break; case EXTENDED_ANALOG: if (argc > 1) { int val = argv[1]; if (argc > 2) val |= (argv[2] << 7); if (argc > 3) val |= (argv[3] << 14); analogWriteCallback(argv[0], val); } break; case CAPABILITY_QUERY: Serial.write(START_SYSEX); Serial.write(CAPABILITY_RESPONSE); for (byte pin=0; pin < TOTAL_PINS; pin++) { if (IS_PIN_DIGITAL(pin)) { Serial.write((byte)INPUT); Serial.write(1); Serial.write((byte)OUTPUT); Serial.write(1); } if (IS_PIN_ANALOG(pin)) { Serial.write(ANALOG); Serial.write(10); } if (IS_PIN_PWM(pin)) { Serial.write(PWM); Serial.write(8); } if (IS_PIN_SERVO(pin)) { Serial.write(SERVO); Serial.write(14); } if (IS_PIN_I2C(pin)) { Serial.write(I2C); Serial.write(1); // to do: determine appropriate value } Serial.write(127); } Serial.write(END_SYSEX); break; case PIN_STATE_QUERY: if (argc > 0) { byte pin=argv[0]; Serial.write(START_SYSEX); Serial.write(PIN_STATE_RESPONSE); Serial.write(pin); if (pin < TOTAL_PINS) { Serial.write((byte)pinConfig[pin]); Serial.write((byte)pinState[pin] & 0x7F); if (pinState[pin] & 0xFF80) Serial.write((byte)(pinState[pin] >> 7) & 0x7F); if (pinState[pin] & 0xC000) Serial.write((byte)(pinState[pin] >> 14) & 0x7F); } Serial.write(END_SYSEX); } break; case ANALOG_MAPPING_QUERY: Serial.write(START_SYSEX); Serial.write(ANALOG_MAPPING_RESPONSE); for (byte pin=0; pin < TOTAL_PINS; pin++) { Serial.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127); } Serial.write(END_SYSEX); break; } } void enableI2CPins() { byte i; // is there a faster way to do this? would probaby require importing // Arduino.h to get SCL and SDA pins for (i=0; i < TOTAL_PINS; i++) { if(IS_PIN_I2C(i)) { // mark pins as i2c so they are ignore in non i2c data requests setPinModeCallback(i, I2C); } } isI2CEnabled = true; // is there enough time before the first I2C request to call this here? Wire.begin(); } /* disable the i2c pins so they can be used for other functions */ void disableI2CPins() { isI2CEnabled = false; // disable read continuous mode for all devices queryIndex = -1; // uncomment the following if or when the end() method is added to Wire library // Wire.end(); } /*============================================================================== * SETUP() *============================================================================*/ void systemResetCallback() { // initialize a defalt state Serial.println(F("***RESET***")); // TODO: option to load config from EEPROM instead of default if (isI2CEnabled) { disableI2CPins(); } for (byte i=0; i < TOTAL_PORTS; i++) { reportPINs[i] = false; // by default, reporting off portConfigInputs[i] = 0; // until activated previousPINs[i] = 0; } // pins with analog capability default to analog input // otherwise, pins default to digital output for (byte i=0; i < TOTAL_PINS; i++) { if (IS_PIN_ANALOG(i)) { // turns off pullup, configures everything setPinModeCallback(i, ANALOG); } else { // sets the output to 0, configures portConfigInputs setPinModeCallback(i, INPUT); } } // by default, do not report any analog inputs analogInputsToReport = 0; /* send digital inputs to set the initial state on the host computer, * since once in the loop(), this firmware will only send on change */ /* TODO: this can never execute, since no pins default to digital input but it will be needed when/if we support EEPROM stored config for (byte i=0; i < TOTAL_PORTS; i++) { outputPort(i, readPort(i, portConfigInputs[i]), true); } */ } aci_evt_opcode_t lastBTLEstatus, BTLEstatus; void setup() { Serial.begin(9600); Serial.println(F("Adafruit BTLE Firmata test")); BLEserial.begin(); BTLEstatus = lastBTLEstatus = ACI_EVT_DISCONNECTED; } void firmataInit() { Serial.println(F("Init firmata")); //BLE_Firmata.setFirmwareVersion(FIRMATA_MAJOR_VERSION, FIRMATA_MINOR_VERSION); //Serial.println(F("firmata analog")); BLE_Firmata.attach(ANALOG_MESSAGE, analogWriteCallback); //Serial.println(F("firmata digital")); BLE_Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback); //Serial.println(F("firmata analog report")); BLE_Firmata.attach(REPORT_ANALOG, reportAnalogCallback); //Serial.println(F("firmata digital report")); BLE_Firmata.attach(REPORT_DIGITAL, reportDigitalCallback); //Serial.println(F("firmata pinmode")); BLE_Firmata.attach(SET_PIN_MODE, setPinModeCallback); //Serial.println(F("firmata sysex")); BLE_Firmata.attach(START_SYSEX, sysexCallback); //Serial.println(F("firmata reset")); BLE_Firmata.attach(SYSTEM_RESET, systemResetCallback); Serial.println(F("Begin firmata")); BLE_Firmata.begin(); systemResetCallback(); // reset to default config } /*============================================================================== * LOOP() *============================================================================*/ void loop() { // Check the BTLE link, how're we doing? BLEserial.pollACI(); // Link status check BTLEstatus = BLEserial.getState(); // Check if something has changed if (BTLEstatus != lastBTLEstatus) { // print it out! if (BTLEstatus == ACI_EVT_DEVICE_STARTED) { Serial.println(F("* Advertising started")); } if (BTLEstatus == ACI_EVT_CONNECTED) { Serial.println(F("* Connected!")); // initialize Firmata cleanly firmataInit(); } if (BTLEstatus == ACI_EVT_DISCONNECTED) { Serial.println(F("* Disconnected or advertising timed out")); } // OK set the last status change to this one lastBTLEstatus = BTLEstatus; } // if not connected... bail if (BTLEstatus != ACI_EVT_CONNECTED) { delay(100); return; } // For debugging, see if there's data on the serial console, we would forwad it to BTLE if (Serial.available()) { BLEserial.write(Serial.read()); } // Onto the Firmata main loop byte pin, analogPin; /* DIGITALREAD - as fast as possible, check for changes and output them to the * BTLE buffer using Serial.print() */ checkDigitalInputs(); /* SERIALREAD - processing incoming messagse as soon as possible, while still * checking digital inputs. */ while(BLE_Firmata.available()) { //Serial.println(F("*data available*")); BLE_Firmata.processInput(); } /* SEND FTDI WRITE BUFFER - make sure that the FTDI buffer doesn't go over * 60 bytes. use a timer to sending an event character every 4 ms to * trigger the buffer to dump. */ // make the sampling interval longer if we have more analog inputs! uint8_t analogreportnums = 0; for(uint8_t a=0; a<8; a++) { if (analogInputsToReport & (1 << a)) { analogreportnums++; } } samplingInterval = (uint16_t)MINIMUM_SAMPLE_DELAY + (uint16_t)ANALOG_SAMPLE_DELAY * (1+analogreportnums); currentMillis = millis(); if (currentMillis - previousMillis > samplingInterval) { previousMillis += samplingInterval; /* ANALOGREAD - do all analogReads() at the configured sampling interval */ for(pin=0; pin