217 lines
7.0 KiB
C++
217 lines
7.0 KiB
C++
/*-------------------------------------------------------------------------
|
|
NeoPixel library helper functions for Esp8266 UART hardware
|
|
|
|
Written by Michael C. Miller.
|
|
|
|
I invest time and resources providing this open source code,
|
|
please support me by dontating (see https://github.com/Makuna/NeoPixelBus)
|
|
|
|
-------------------------------------------------------------------------
|
|
This file is part of the Makuna/NeoPixelBus library.
|
|
|
|
NeoPixelBus is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as
|
|
published by the Free Software Foundation, either version 3 of
|
|
the License, or (at your option) any later version.
|
|
|
|
NeoPixelBus is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with NeoPixel. If not, see
|
|
<http://www.gnu.org/licenses/>.
|
|
-------------------------------------------------------------------------*/
|
|
|
|
#ifdef ARDUINO_ARCH_ESP8266
|
|
#include "NeoEsp8266UartMethod.h"
|
|
#include <utility>
|
|
extern "C"
|
|
{
|
|
#include <eagle_soc.h>
|
|
#include <ets_sys.h>
|
|
#include <uart.h>
|
|
#include <uart_register.h>
|
|
}
|
|
|
|
#define UART1 1
|
|
#define UART1_INV_MASK (0x3f << 19)
|
|
|
|
// Gets the number of bytes waiting in the TX FIFO of UART1
|
|
static inline uint8_t getUartTxFifoLength()
|
|
{
|
|
return (U1S >> USTXC) & 0xff;
|
|
}
|
|
|
|
// Append a byte to the TX FIFO of UART1
|
|
// You must ensure the TX FIFO isn't full
|
|
static inline void enqueue(uint8_t byte)
|
|
{
|
|
U1F = byte;
|
|
}
|
|
|
|
static const uint8_t* esp8266_uart1_async_buf;
|
|
static const uint8_t* esp8266_uart1_async_buf_end;
|
|
|
|
NeoEsp8266Uart::NeoEsp8266Uart(uint16_t pixelCount, size_t elementSize)
|
|
{
|
|
_sizePixels = pixelCount * elementSize;
|
|
_pixels = (uint8_t*)malloc(_sizePixels);
|
|
memset(_pixels, 0x00, _sizePixels);
|
|
}
|
|
|
|
NeoEsp8266Uart::~NeoEsp8266Uart()
|
|
{
|
|
// Wait until the TX fifo is empty. This way we avoid broken frames
|
|
// when destroying & creating a NeoPixelBus to change its length.
|
|
while (getUartTxFifoLength() > 0)
|
|
{
|
|
yield();
|
|
}
|
|
|
|
free(_pixels);
|
|
}
|
|
|
|
void NeoEsp8266Uart::InitializeUart(uint32_t uartBaud)
|
|
{
|
|
// Configure the serial line with 1 start bit (0), 6 data bits and 1 stop bit (1)
|
|
Serial1.begin(uartBaud, SERIAL_6N1, SERIAL_TX_ONLY);
|
|
|
|
// Invert the TX voltage associated with logic level so:
|
|
// - A logic level 0 will generate a Vcc signal
|
|
// - A logic level 1 will generate a Gnd signal
|
|
CLEAR_PERI_REG_MASK(UART_CONF0(UART1), UART1_INV_MASK);
|
|
SET_PERI_REG_MASK(UART_CONF0(UART1), (BIT(22)));
|
|
}
|
|
|
|
void NeoEsp8266Uart::UpdateUart()
|
|
{
|
|
// Since the UART can finish sending queued bytes in the FIFO in
|
|
// the background, instead of waiting for the FIFO to flush
|
|
// we annotate the start time of the frame so we can calculate
|
|
// when it will finish.
|
|
_startTime = micros();
|
|
|
|
// Then keep filling the FIFO until done
|
|
const uint8_t* ptr = _pixels;
|
|
const uint8_t* end = ptr + _sizePixels;
|
|
while (ptr != end)
|
|
{
|
|
ptr = FillUartFifo(ptr, end);
|
|
}
|
|
}
|
|
|
|
const uint8_t* ICACHE_RAM_ATTR NeoEsp8266Uart::FillUartFifo(const uint8_t* pixels, const uint8_t* end)
|
|
{
|
|
// Remember: UARTs send less significant bit (LSB) first so
|
|
// pushing ABCDEF byte will generate a 0FEDCBA1 signal,
|
|
// including a LOW(0) start & a HIGH(1) stop bits.
|
|
// Also, we have configured UART to invert logic levels, so:
|
|
const uint8_t _uartData[4] = {
|
|
0b110111, // On wire: 1 000 100 0 [Neopixel reads 00]
|
|
0b000111, // On wire: 1 000 111 0 [Neopixel reads 01]
|
|
0b110100, // On wire: 1 110 100 0 [Neopixel reads 10]
|
|
0b000100, // On wire: 1 110 111 0 [NeoPixel reads 11]
|
|
};
|
|
uint8_t avail = (UART_TX_FIFO_SIZE - getUartTxFifoLength()) / 4;
|
|
if (end - pixels > avail)
|
|
{
|
|
end = pixels + avail;
|
|
}
|
|
while (pixels < end)
|
|
{
|
|
uint8_t subpix = *pixels++;
|
|
enqueue(_uartData[(subpix >> 6) & 0x3]);
|
|
enqueue(_uartData[(subpix >> 4) & 0x3]);
|
|
enqueue(_uartData[(subpix >> 2) & 0x3]);
|
|
enqueue(_uartData[ subpix & 0x3]);
|
|
}
|
|
return pixels;
|
|
}
|
|
|
|
NeoEsp8266AsyncUart::NeoEsp8266AsyncUart(uint16_t pixelCount, size_t elementSize)
|
|
: NeoEsp8266Uart(pixelCount, elementSize)
|
|
{
|
|
_asyncPixels = (uint8_t*)malloc(_sizePixels);
|
|
}
|
|
|
|
NeoEsp8266AsyncUart::~NeoEsp8266AsyncUart()
|
|
{
|
|
// Remember: the UART interrupt can be sending data from _asyncPixels in the background
|
|
while (esp8266_uart1_async_buf != esp8266_uart1_async_buf_end)
|
|
{
|
|
yield();
|
|
}
|
|
free(_asyncPixels);
|
|
}
|
|
|
|
void ICACHE_RAM_ATTR NeoEsp8266AsyncUart::InitializeUart(uint32_t uartBaud)
|
|
{
|
|
NeoEsp8266Uart::InitializeUart(uartBaud);
|
|
|
|
// Disable all interrupts
|
|
ETS_UART_INTR_DISABLE();
|
|
|
|
// Clear the RX & TX FIFOS
|
|
SET_PERI_REG_MASK(UART_CONF0(UART1), UART_RXFIFO_RST | UART_TXFIFO_RST);
|
|
CLEAR_PERI_REG_MASK(UART_CONF0(UART1), UART_RXFIFO_RST | UART_TXFIFO_RST);
|
|
|
|
// Set the interrupt handler
|
|
ETS_UART_INTR_ATTACH(IntrHandler, NULL);
|
|
|
|
// Set tx fifo trigger. 80 bytes gives us 200 microsecs to refill the FIFO
|
|
WRITE_PERI_REG(UART_CONF1(UART1), 80 << UART_TXFIFO_EMPTY_THRHD_S);
|
|
|
|
// Disable RX & TX interrupts. It is enabled by uart.c in the SDK
|
|
CLEAR_PERI_REG_MASK(UART_INT_ENA(UART1), UART_RXFIFO_FULL_INT_ENA | UART_TXFIFO_EMPTY_INT_ENA);
|
|
|
|
// Clear all pending interrupts in UART1
|
|
WRITE_PERI_REG(UART_INT_CLR(UART1), 0xffff);
|
|
|
|
// Reenable interrupts
|
|
ETS_UART_INTR_ENABLE();
|
|
}
|
|
|
|
void NeoEsp8266AsyncUart::UpdateUart()
|
|
{
|
|
// Instruct ESP8266 hardware uart1 to send the pixels asynchronously
|
|
esp8266_uart1_async_buf = _pixels;
|
|
esp8266_uart1_async_buf_end = _pixels + _sizePixels;
|
|
SET_PERI_REG_MASK(UART_INT_ENA(1), UART_TXFIFO_EMPTY_INT_ENA);
|
|
|
|
// Annotate when we started to send bytes, so we can calculate when we are ready to send again
|
|
_startTime = micros();
|
|
|
|
// Copy the pixels to the idle buffer and swap them
|
|
memcpy(_asyncPixels, _pixels, _sizePixels);
|
|
std::swap(_asyncPixels, _pixels);
|
|
}
|
|
|
|
void ICACHE_RAM_ATTR NeoEsp8266AsyncUart::IntrHandler(void* param)
|
|
{
|
|
// Interrupt handler is shared between UART0 & UART1
|
|
if (READ_PERI_REG(UART_INT_ST(UART1))) //any UART1 stuff
|
|
{
|
|
// Fill the FIFO with new data
|
|
esp8266_uart1_async_buf = FillUartFifo(esp8266_uart1_async_buf, esp8266_uart1_async_buf_end);
|
|
// Disable TX interrupt when done
|
|
if (esp8266_uart1_async_buf == esp8266_uart1_async_buf_end)
|
|
{
|
|
CLEAR_PERI_REG_MASK(UART_INT_ENA(UART1), UART_TXFIFO_EMPTY_INT_ENA);
|
|
}
|
|
// Clear all interrupts flags (just in case)
|
|
WRITE_PERI_REG(UART_INT_CLR(UART1), 0xffff);
|
|
}
|
|
|
|
if (READ_PERI_REG(UART_INT_ST(UART0)))
|
|
{
|
|
// TODO: gdbstub uses the interrupt of UART0, but there is no way to call its
|
|
// interrupt handler gdbstub_uart_hdlr since it's static.
|
|
WRITE_PERI_REG(UART_INT_CLR(UART0), 0xffff);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|